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Abstract

This paper presents the performance of iterative solvers and preconditioners for the non-Hermitian dense linear systems arising from the

boundary value problem related to the diffraction wave field around a very large floating structure (VLFS). These systems can be solved iteratively

using the GMRES with deflated restarting (GMRES-DR), which has Krylov subspaces with approximate eigenvectors as starting vectors. The

number of iteration needed by GMRES or GMRES-DR can be significantly reduced using preconditioning techniques. Matrix-vector products are

approximated by utilizing the fast multipole method (FMM), which need not directly calculate the dense matrix of the far field interactions. The

combination of the operator splitting preconditioner (OSP) and the Crout version of the incomplete LU factorization (ILUC) does not require the

dense matrix of the far field interactions. Numerical experiments from a hybrid-type VLFS, which is composed of pontoon-part and semi-

submersible part, whose length is 3000 m are presented.
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1. Introduction

The problem of the interaction between the global structural

response of a very large floating structure (VLFS) and the

associated diffraction wave field in an unbounded exterior

domain is achieved here by matching a boundary element

analysis of the exterior diffraction wave field with a finite

element analysis of the elastic structure at the fluid-structure

interface. We finally arrive at solving a large system of linear

equations of the form

Ax Z b; (1)

where the coefficient matrix A is non-Hermitian and dense

(see Refs. [1,2]).

The generalized minimal residual method (GMRES) [3] is a

well-known iterative method for solving large non-Hermitian

linear systems of equations. Since GMRES becomes increas-

ingly expensive and requires more storage as the iteration

proceeds, it generally uses restarting, which slows

the convergence. The GMRES with deflated restarting

(GMRES-DR) [4] is derived from restarting implicitly with

an appropriate vector, which is a linear combination of the

approximate eigenvectors obtained from the orthogonal

projection method [5] onto Krylov subspaces [3–5]. The

deflation of eigenvalues can greatly improve the convergence

rate of restarted GMRES.

It is well known that the convergence rate of Krylov

subspace methods for linear equations depends on the spectrum

of A [6]. It is therefore natural to try to transform the original

system (1) into one having the same solution but more

favorable spectral properties. A preconditioner is a matrix that

can be used to accomplish such a transformation. The operator

splitting preconditioner (OSP) [7,8] is an effective technique in

solving dense linear systems arising from the boundary

element method (BEM). OSP splits the coefficient matrix A

into the sparse matrix Anear of the near field interactions and the

dense matrix Afar of the far field interactions. Out of Anear,

the preconditioner M is constructed using the Crout version of

the incomplete LU factorization (ILUC) [9]. Matrix-vector

products are approximated by utilizing the fast multipole

method (FMM) [10,11], which need not directly calculate Afar.

The OSP-ILUC preconditioner does not require Afar. There-

fore, it can be expected that the boundary element method

using FMM will be further accelerated by OSP-ILUC.

In the first part of this paper, we apply GMRES-DR to the

analysis of the boundary value problem related to
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the diffraction wave field around a very large floating structure

(VLFS).

In the second part, we apply OSP-ILUC to our example.

OSP has a parameter r, which is the minimum distance of far

points. We show that OSP becomes ineffective if r is too large.

We clarify the range of r where OSP is effective at the same

time.

2. Integral equation formulation

Example that is investigated is shown in Fig. 1, which is a

hybrid-type VLFS, which is composed of pontoon-part and

semi-submersible part, floating in the open sea with constant

depth h, whose length is L, whose width is B, and whose draft is

d [1]. The coordinate system is defined such that the xy plane

locates on the undisturbed free surface and the z-axis points

upward. The longcrested harmonic wave with small amplitude

is considered. The amplitude of the incident wave is defined by

A, the circular frequency by u, and the angle of incidence by b.

bZ0 corresponds to the head wave from positive x direction

and bZp/2 to the beam wave from positive y direction.

Assuming the water to be perfect fluid with no viscosity and

incompressible, and the fluid motion to be irrotational, then the

fluid motion can be represented by a velocity potential F. Also,

we consider the steady-state harmonic motions of the fluid and

the structure, with the circular frequency u. Then, all of the

time-dependent quantities can be represented similarly as

follows:

Fðx; y; z; tÞ Z Re½fðx; y; zÞeiut�; (2)

where i is the imaginary unit and t is the time.

Assuming the fluid motion to be small, we can employ the

linearized wave theory. Then, our problem is formulated as the

boundary value problem represented by a velocity potential f

as follows:

V2f Z 0 in U (3)

vf

vz
Z Kf on SF (4)

vf

vz
Z 0 on B0 (5)

vf

vn
Z 0 on SH (6)

lim
r/N

ffiffi
r

p vðfKfIÞ

vr
KikðfKfIÞ

� �
Z 0 on SN (7)

fI Z i
gA

u

cosh kðz ChÞ

cosh kh
eikðx cos bCy sin bÞ (8)

Here, fI is the incident wave potential. The fluid domain is

defined by the symbol U, the undisturbed free surface by SF, the

flat bottom base surface of zZKh by B0, the wetted-surface of

VLFS by SH, and the boundary at infinity by SN. The symbol n

represents the normal vector (positive direction is out of fluid

domain into the body inner part), and r is a horizontal distance

from the origin. The symbol K is the wave number in the

infinite depth (Zu2/g; g is the gravitational acceleration), and k

is the wave number. Then, the following dispersion relation is

satisfied:

k tanh kh Z K (9)

Substituting the boundary conditions represented by a

velocity potential f into the integral equation, we have the

following integral equation [12]:

4pfðxÞC

ð
SH

fðxÞ
vGðx; xÞ

vnx

KfðxÞ
vG2ðx; xÞ

vnx

� �
dx Z 4pfIðxÞ

(10)

Here, G(x,x) is called the free-surface Green’s function and

it is a fundamental solution of the Laplacian P2 which satisfies

boundary conditions (4), (5) and (7), and G2(x,x) is the

auxiliary Green’s function which corresponds to a rigid free

surface condition [12]. From the integral Eq. (10) we arrive at a

system of linear equations, whose solution is the potentials at

nodes after discretization of the SH surface [1,11].

3. GMRES with deflated restarting

It is well known that the convergence rate of GMRES for

linear equations depends on the distribution of eigenvalues of

the coefficient matrix A. Therefore, deflating small eigenvalues

can greatly improve the convergence rate. The GMRES with

deflated restarting (GMRES-DR) [4] is derived from restarting

implicitly with an appropriate vector, which is a linear

combination of harmonic Ritz vectors [4].

3.1. Harmonic Ritz pairs

Definition 1. Let A be an n!n complex matrix and T be an m

dimensional subspace of Cn. A pair (q,y), where q is a complex

number and y is a non-zero vector in T, is called a Ritz pairFig. 1. A hybrid-type VLFS [1].
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