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Abstract

This paper is concerned with calculation of charge distribution on conducting elements in microelectromechanical and

nanoelectromechanical systems (MEMS and NEMS). The conductors are beam like in MEMS or nanotubes in NEMS. The ground

plane is typically present in such problems. This is usually modeled by constructing image elements with the ground treated as a flat

mirror, thereby doubling the size of a problem. An alternative approach is to model the ground directly in a boundary element method

(BEM) formulation of the problem. The latter approach is adopted in this paper. The governing BEM equations, and their

regularization, is discussed in detail. Numerical results are presented for selected examples and their results are compared with analytical

solutions whenever possible.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Microelectromechanical systems (MEMS) have demon-
strated important applications in a wide variety of
industries including mechanical and aerospace, medicine,
communications, information technology etc. Nanoelec-
tromechanical systems (NEMS) are ‘‘smaller’’ MEMS in
the sense that they have submicron critical dimensions.
Owing primarily to their small size, NEMS can offer very
high sensitivities (e.g. force sensitivities at the attonewton
level, mass sensitivities at a single molecule or even a single
atom level, and charge sensitivities at the level of the charge
on a single electron). In addition, they offer mechanical
quality factors in the tens of thousands and fundamental
frequencies in the microwave range [1,2]. Fabrication of
silicon nanotweezers [3] and nanoresonators [4] has been
demonstrated recently. Carbon nanotubes (CNTs) have
remarkable properties—they are very stiff, have low
density, ultra-small cross-sections and can be defect
free. They offer fascinating applications possibilities.

Natural frequencies of tunable CNTs have been measured
recently [5].
Numerical simulation of electrically actuated MEMS

devices have been carried out for around a decade or so by
using the boundary element method (BEM—see, e.g.
[6–10]) to model the exterior electric field and the finite
element method (FEM—see, e.g. [11–13]) to model
deformation of the structure. The commercial software
package MEMCAD [14], for example, uses the commercial
FEM software package ABAQUS for mechanical analysis,
together with a BEM code FastCap [15] for the electric
field analysis. Other examples of such work are [16–19]; as
well as [14,20,21] for dynamic analysis of MEMS. A very
nice recent example of NEMS simulation is [22]. This paper
employs the classical electrostatic model for nano con-
ductors and three different electrostatic models: classical,
semiclassical and quantum-mechanical, for semiconduc-
tors.
Many applications in MEMS and NEMS require BEM

analysis of the electric field exterior to thin conducting
objects. In the context of MEMS with very thin beams or
plates (see Fig. 1), a convenient way to model such a
problem is to assume plates (or beams) with vanishing
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thickness and solve for the sum of the charges on the upper
and lower surfaces of each plate [24] (or beam). The
standard boundary integral equation (BIE) with a weakly
singular kernel is used in [24] and this approach works well
for determining, for example, the capacitance of a parallel
plate capacitor. For MEMS calculations, however, one
must obtain the charge densities separately on the upper
and lower surfaces of a plate (or beam) since the traction at
a surface point on a plate (or beam) depends on the square
of the charge density at that point. The gradient BIE is
employed in [25] to obtain these charge densities sepa-
rately. The formulation given in [25] is a BEM scheme that
is particularly well-suited for MEMS analysis of very thin
plates—for h=Lp0:001—in terms of the length L (of a side
of a square plate) and its thickness h. A similar approach
has also been developed for MEMS with very thin beams
[26]. Similar work has also been reported recently by
Chuyan et al. [27] in the context of determining fringing
fields and levitating forces for 2D beam shaped conductors
in MEMS combdrives. A fully coupled BEM/FEM MEMS
calculation with very thin plates has just been completed
[28]. See, also, [29] for an application of the thin plate idea
for modeling damping forces on MEMS with thin plates.

Another interesting problem that has been solved
recently deals with charge distribution on thin conducting
CNTs [30]. A line model for a nanotube is proposed here.
As before for beams and plates, this model overcomes the
problem of dealing with nearly singular matrices that occur
when the standard BEM is applied to very thin features
(objects or gaps). The charge distribution per unit length
on the surface of a nanotube is obtained first. The charge
density per unit area on the entire nanotube surface is
obtained next by a post-processing step. This new
approach is very efficient. Numerical results are presented
for various examples. Results for selected problems are
compared with those from a full 3D BEM calculation [31]
as well as with available analytical solutions [32]. Excellent
agreement is obtained with available analytical solutions.

In MEMS and NEMS calculations of the type con-
sidered here, ground planes are typically present. The
typical approach for dealing with this issue is to construct
an image plane with the ground plane treated as a flat
mirror. This, of course, doubles the size of a given problem.
The BEM formulation is modified in the present work so
that the ground plane is modeled directly. Problems with
conducting beams are considered first. This is followed by
problems with thin conducting nanotubes.
An alternative way of modeling the ground plane is to

use half-space Green’s functions in the BEM formulation.
This approach is presented in [30] for nanotube problems.
One advantage of the approach discussed in the present
paper is that, unlike in other formulations, the charge
distribution on the ground is also obtained here. This
information can be useful in certain problems.
The present paper is organized as follows BIEs are first

presented for an infinite region containing two thin
conducting beams. This is followed by BIEs in a semi-
infinite region containing one thin conducting beam and
the ground. The next section deals with a semi-infinite
region containing an arbitrary number of beams, together
with the ground plane. Each beam can be of arbitrary
length and be oriented in an arbitrary direction, but their
mid-planes must all lie in the same plane. Numerical results
are presented for some beam problems. Analysis of
conducting nanotubes follows using the same format as
described above. A concluding remarks section completes
the paper.

2. BIEs in infinite region containing two thin conducting

beams

Consider the situation shown in Fig. 2 with two parallel
beams. Of interest is the solution of the following Dirichlet
problem for Laplace’s equation:

r2fðxÞ ¼ 0; x 2 B; fðxÞ prescribed for x 2 qB, (1)

where f is the potential and B is the region exterior to the
two beams, each of length L and height h. The unit normal
n to qB is defined to point away from B (i.e. into a beam).

2.1. Regular BIE—source point approaching a beam surface

sþ1

It is first noted that, for this problem, one can write (see,
e.g. [26,33]):

fðnÞ ¼ �
Z

s

ln rðn; yÞsðyÞdsðyÞ

2p�
þ C, (2)

where s is the charge density, per unit area, at a point on a
beam surface and s is the total surface of the two beams.
Also, rðn; yÞ ¼ y� n (with n a source and y a field point),
r ¼ jrj, and � is the dielectric constant of the medium
outside the conductors. The constant C is given by the
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Fig. 1. Parallel plate resonator: geometry and detail of the parallel plate

fingers (from [23]).

H. Chen, S. Mukherjee / Engineering Analysis with Boundary Elements 30 (2006) 910–924 911



Download English Version:

https://daneshyari.com/en/article/513691

Download Persian Version:

https://daneshyari.com/article/513691

Daneshyari.com

https://daneshyari.com/en/article/513691
https://daneshyari.com/article/513691
https://daneshyari.com

