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Abstract

Semiconductor mechanical components of nanoelectromechanical systems (NEMS) typically undergo deformations when subjected to
electrostatic forces. Computational analysis of electrostatic NEMS requires an electrostatic analysis to compute the electrostatic forces
acting on the nanomechanical structures and a mechanical analysis to compute the deformation of the nanomechanical structures.
Typically, the mechanical analysis is performed by a Lagrangian approach using the undeformed position of the structures. However, the
electrostatic analysis is performed by using the deformed position of the nanostructures. The electrostatic analysis on the deformed
position of the nanostructures requires updating the geometry of the structures during each iteration. In this paper, based on a recently
proposed hybrid BIE/Poisson/Schrédinger approach, we propose Lagrangian formulations for the BIE/Poisson/Schrédinger equations
and solve the coupled Lagrangian BIE/Poisson/Schrodinger’s equations self-consistently using the undeformed position of the
semiconductors to compute the charge distributions on the deformed semiconductors. The proposed approach eliminates the
requirement of updating the geometry and, consequently, significantly simplifies the procedure of coupled electromechanical analysis of
NEMS.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A number of nanoelectromechanical device and system
(NEMS) applications have been proposed recently [1-3].
Computational analysis of electrostatically actuated NEMS
requires a self-consistent analysis of the coupled electrostatic
and mechanical energy domains [4]. Typically, a NEM system
contains a deformable and a fixed structure separated by a
dielectric medium. The deformable structure is typically made
of a semiconductor material, such as silicon, and the fixed
structure can be either a conductor or a semiconductor.
When a voltage is applied between the deformable and the
fixed structures, electrostatic forces act on both the structures
due to the induced charges. Since the fixed structure cannot
move, the electrostatic forces move only the deformable
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structure. When the deformable semiconductor structure
undergoes a shape change, the charge redistributes in the
structure and, consequently, the resultant electrostatic forces
and the deformation of the structure also change. This
process continues until an equilibrium state is reached. The
primary steps involved in the self-consistent solution
approach are summarized in Algorithm 1.

Algorithm 1. Procedure for coupled electromechanical
analysis

repeat

1. Do mechanical analysis (on the undeformed geometry)
to compute structural displacements

2. Update the geometry of the semiconductor using the
computed displacements

3. Compute charge distribution in the semiconductor by
electrostatic analysis (on the deformed geometry)

4. Compute electrostatic forces (on the deformed
geometry)
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5. Transform electrostatic forces to the original
undeformed configuration
until an equilibrium state is reached

In microelectromechanical systems (MEMS), the me-
chanical components are typically treated as conductors
[5-9] and the electrostatic analysis of MEMS can be
performed by solving the potential or the Laplace equation
in the domain exterior to all the conductors. However, as
the characteristic length in NEM structures can be
comparable to the Debye length, the NEM structures can
no longer be approximated as conductors. In addition,
when the characteristic length of the NEM structure
shrinks to several tens of nanometers, the carrier quantum
confinement in the semiconductor structure [10] can impose
a significant effect on the charge distribution in the
mechanical components of NEMS. As a result, coupled
Poisson/Schrédinger equations need to be solved self-
consistently to obtain the electronic properties such as the
potential field and the charge distribution of the system
[11,12]. Recently, we have proposed a hybrid BIE/Poisson/
Schrédinger approach for quantum-mechanical electro-
static analysis of NEMS [13].

An important aspect of NEMS is that NEM structures
typically undergo deformations when subjected to electro-
static forces. The computational analysis of NEMS
involves repeated mechanical and electrostatic analysis on
NEM structures, as shown in Algorithm 1. The mechanical
analysis is typically carried out in the undeformed
configuration of the structures. However, the electrostatic
analysis is typically performed on the deformed structures.
Therefore, the geometry of the structures needs to be
updated before an electrostatic analysis is performed
during each iteration. The need to update the geometry
of the structures could introduce several problems—First,
flat surfaces of the structures in the initial configuration can
become curved due to deformation. This requires the
development of complex integration schemes on curved
panels [14] to perform electrostatic analysis. Second, when
the structure undergoes a very large deformation, remesh-
ing the surface as well as the interior of the deformed
structure may become necessary before an electrostatic
analysis is performed. Third, interpolation functions, used
in many numerical methods, need to be recomputed
whenever the geometry changes. Each of these issues
significantly increases the computational effort making the
self-consistent analysis of electrostatic NEMS an extremely
complex and challenging task. A Lagrangian approach for
electrostatic analysis of deformable conductors or MEMS
has been proposed and discussed in [6,8,15]. In this paper,
we propose a Lagrangian formulation for the hybrid BIE/
Poisson/Schrodinger equations for electrostatic analysis of
deformable semiconductor nanostructures or NEMS. We
refer to this approach as the Lagrangian BIE/Poisson/
Schrodinger approach. The Lagrangian BIE/Poisson/
Schrodinger approach eliminates the requirement of a

cut-off box as well as the requirement of updating the
geometry of nanostructures. While the Lagrangian ap-
proach is mathematically equivalent to the deformed
configuration BIE/Poisson/Schrodinger approach, it sig-
nificantly simplifies the coupled electrical and mechanical
analysis procedure as shown in Algorithm 2. In addition, to
take advantage of the flexibility of meshless methods (see
e.g., [16]), in this paper we employ the meshless finite cloud
method (FCM) [17-20] for interior analysis (i.e., for the
solution of the Lagrangian Poisson/Schrédinger equations
in the semiconductor) and the meshless boundary integral
formulation [21-24] for exterior analysis (i.e., for the
solution of the Lagrangian boundary integral equations of
the exterior potential equation). The charge distribution
and the capacitance of the NEMS are obtained by solving
the coupled system of equations self-consistently. Since the
primary focus of this paper is Lagrangian electrostatic
analysis, based on quantum-mechanical models, we assume
that the deformation of the nanostructure is known, i.e., we
address the question of if the structure were to undergo a
certain deformation, can we compute the charge density
without updating the geometry (i.e., we discuss step 2 of
Algorithm 2 assuming step 1 can be implemented using
existing tools and techniques). For self-consistent mechan-
ical and electrostatic analysis, the deformation can be
computed by performing a mechanical analysis using
classical theories [7], or classical theories with material
properties extracted from atomistic simulation [4], or by
using a multiscale approach [25].

Algorithm 2. Procedure for coupled electromechanical
analysis by using a Lagrangian approach for both
mechanical and electrostatic analysis

repeat

1. Do mechanical analysis (on the undeformed geometry)
to compute structural displacements

2. Compute charge distribution in the semiconductor by
electrostatic analysis (on the undeformed geometry)

3. Compute electrostatic forces (on the undeformed
geometry)

until an equilibrium state is reached

The rest of the paper is organized as follows: Section 2
presents a brief description of the hybrid BIE/Poisson/
Schrodinger approach for electrostatic analysis of nanos-
tructures, Section 3 presents the Lagrangian hybrid BIE/
Poisson/Schrodinger formulations, Section 4 describes the
numerical implementation of the Lagrangian hybrid BIE/
Poisson approach, Section 5 presents numerical results and
Section 6 presents conclusions.

2. Hybrid BIE/Poisson/Schriédinger approach
To explain electrostatic analysis of NEMS, we consider a

nanoswitch example as shown in Fig. 1. The nanoswitch
consists of a semiconductor beam structure that is clamped
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