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Abstract

We analyze electrostatic deformations of rectangular, annular circular, solid circular, and elliptic micro-electromechanical systems

(MEMS) by modeling them as elastic membranes. The nonlinear Poisson equation governing their deformations is solved numerically by

the meshless local Petrov–Galerkin (MLPG) method. A local symmetric augmented weak formulation of the problem is introduced, and

essential boundary conditions are enforced by introducing a set of Lagrange multipliers. The trial functions are constructed by using the

moving least-squares approximation, and the test functions are chosen from a space of functions different from the space of trial

solutions. The resulting nonlinear system of equations is solved by using the pseudoarclength continuation method. Presently computed

values of the pull-in voltage and the maximum pull-in deflection for the rectangular and the circular MEMS are found to agree very well

with those available in the literature; results for the elliptic MEMS are new.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent technological developments and increasing mar-
ket demand have opened promising research opportunities
and engineering priorities in the field of micro-mechanics.
The study of electrostatically actuated micro-electrome-
chanical systems (MEMS) is a special branch of micro-
mechanics. These MEMS are widely used in switches,
micro-mirrors and micro-resonators. At the microscopic
scale, high-energy densities and large forces are available,
and the electrostatic actuation may dominate over other
kinds of actuation.

Most of the electrostatically actuated MEMS consist of
an elastic plate suspended over a stationary rigid plate. The
plates are conductive and a dielectric material fills the gap
between them. An applied electric voltage between the two
plates results in the deflection of the elastic plate, and a
consequent change in the MEMS capacitance. The applied

electrostatic voltage has an upper limit, beyond which the
electrostatic Coulomb force is not balanced by the elastic
restoring force in the deformable plate, the two plates snap
together and the MEMS collapses. This phenomenon,
called pull-in instability, was simultaneously observed
experimentally by Taylor [1], and Nathanson et al. [2].
The accurate estimation of the pull-in voltage is crucial in
the design of electrostatically actuated MEMS device. In
particular, in micro-mirrors [3] and micro-resonators [4]
the designer avoids this instability in order to achieve stable
motions; on the other hand in switching applications [5] the
designer exploits this effect to optimize the performance of
the device.
A simple model for estimating the pull-in parameters

proposed in [2] is based on a lumped mass–spring system.
This model qualitatively describes the pull-in phenomenon
but it overestimates the pull-in voltages for many applica-
tions [6]. A possible extension of the lumped model consists
of modeling the suspended plate as a membrane, and
discarding the fringing electric fields. As discussed in [7],
the membrane approximation is accurate and reliable for
many MEMS devices such as micro-pumps made of thin
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glassy polymers, and grating light valves comprised of
stretched thin ribbons. More refined linear and nonlinear
models have been studied in [8,9].

Solutions by the shooting method (see e.g. [10, Chapter
7] for a discussion, and a list of references) can be obtained
only for particular MEMS geometries that exhibit specific
symmetries [11], that allow for the reduction of two-
dimensional (2-D) to 1-D problems. However, it has been
found in [12] that these simplifications may miss some
unstable branches. Indeed, for an annular circular mem-
brane the solution after the pull-in instability may break
the symmetry inherited by the domain shape, loading, and
boundary conditions. Therefore, it is crucial to develop
accurate and reliable numerical methods for determining
the pull-in instability parameters, and study, for arbitrary
geometries, the MEMS behavior beyond the pull-in
instability. Bao and Mukherjee [13] and Chyuan et al.
[14] have employed the boundary element method to
analyze MEMS.

Recently, considerable research in computational me-
chanics has been devoted to the development of meshless
methods. One objective of these methods is to eliminate, or
at least alleviate the difficulty of meshing and remeshing
the entire structure, by only adding nodes at or deleting
nodes from desired locations in the structure. Meshless
methods may also alleviate some other problems associated
with the finite element method, such as locking and element
distortion. In many applications, they provide smooth and
accurate approximate solutions with a reduced number of
nodes. Therefore, only a few variables are needed in
numerical models.

Meshless methods include the element-free Galerkin [15],
hp-clouds [16], the reproducing kernel particle (RPK) [17],
the smoothed particle hydrodynamics [18], the diffuse
element [19], the partition of unity finite element [20], the
natural element [21], meshless Galerkin using radial basis
functions [22], the meshless local Petrov–Galerkin (MLPG)
[23], and the modified smoothed particle hydrodynamics
(MSPH) [24]. All of these methods, except for the MLPG,
the MSPH, and the collocation, use shadow elements for
evaluating integrals in the governing weak formulations
[25].

The MLPG method has been successfully applied to
several linear problems in mechanics: static linear plane
elasticity [23]; vibrations of elastic planar bodies [26]; static
analysis of thin plates [27]; static analysis of beams [28];
vibrations of cracked beams [41]; static analysis of
functionally graded materials [29]; analysis of dynamic
thermomechanical deformations of functionally graded
materials [30]; analysis of axisymmetric transient heat
conduction in a bimaterial disk [31]; and wave propagation
in a segmented linear elastic bar [32]. Nonlinear problems
analyzed with the MLPG method include adiabatic shear
banding in thermoviscoelastoplastic materials [33], and the
analysis of pull-in instability in micro-beams [34].

In order to completely eliminate a background mesh, the
MLPG method is based on a local weak formulation of the

governing equations and employs meshless interpolations
for both the trial and the test functions. The trial functions
are constructed by using the moving least squares (MLS)
[35] approximation which relies on the location of scattered
points in the body. In the Petrov–Galerkin formulation,
test functions may be chosen from a different space than
the space of trial solutions. Thus, several variations of the
method may be obtained (see e.g. [25] for details).
Here we use the MLPG method to investigate the

behavior of electrostatically actuated MEMS modeled as
elastic membranes, and the method of Lagrange multipliers
to impose displacement-type boundary conditions. Hence,
a local symmetric augmented weak formulation (LSAWF)
of the problem is introduced. Trial functions in the weak
formulation are constructed using the MLS approxima-
tion, and weight functions in the MLS framework are
chosen as test functions (MLPG1, [25]). In order to find the
MEMS deformations beyond the pull-in instability the
pseudoarclength continuation method (see e.g. [36,37]) is
employed for solving the system of nonlinear equations
resulting from the MLPG formulation. The method is
applied to four distinct geometries: a rectangle, a circular
disk, an annular disk, and an elliptic disk. In the first case,
the effect of partial electrodes is studied, and computed
results are compared with those obtained with the shooting
method applied to the problem derived by generalizing the
approach of [7] to partially electroded plates. In the second
case, the computed results are validated by comparing
them with those of [38]. For the annular circular disk, when
symmetry breaking occurs, and no solution by the shooting
method is available, the computed solution is compared
with the finite-difference solution of [12]. To the authors’
knowledge, the elliptic geometry has not been studied thus
far. Here, the effect of the ellipse aspect ratio on the pull-in
instability of the MEMS is investigated, and MLPG results
are compared with those obtained by solving the 2-D
boundary-value problem by the finite-difference method.
The rest of the paper is organized as follows. In Section 2

we present governing equations of the electrostatically
actuated MEMS. In Section 3 we describe the MLPG
method, including the LSWAF, the resulting set of
nonlinear equations for the fictitious nodal deflections,
and the pseudoarclength method. Computed solutions are
presented in Section 4, and comparisons are made with
available results. Conclusions are summarized in Section 5.
In Appendix A we review the MLS approximation for
constructing basis functions, and in Appendix B we give a
brief description of confocal elliptic coordinates.

2. Governing equations

A schematic sketch of the problem studied is shown in
Fig. 1. We assume that (i) both plates are perfect
conductors, and are separated by a dielectric layer of
permittivity 2, (ii) the bottom plate is rigid, and the top
one is flexible, and can be modeled as a membrane,
(iii) the membrane is either clamped or free on the
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