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a b s t r a c t

The recently proposed Finite Cell Method (FCM) is a combination of higher order Finite Element Methods
(FEM) and the Fictitious Domain Concept (FDC). So far, the discretization of the structure under inves-
tigation has been based on hexahedral cells when applying the FCM. In the current paper, we extend the
FCM to tetrahedral cells offering several advantages over the standard approach. If geometrically com-
plex industrial problems have to be solved, often geometry-conforming tetrahedral meshes already exist.
Thus, only micro-structural details that are important for the application, such as pores, need to be
resolved by the FDC. Another significant advantage of tetrahedral cells over hexahedral ones is the
capability for local mesh refinements. This property is of special interest for problems with sharp gra-
dients and highly localized features where a fine mesh is inevitable. By means of the tetrahedral FCM we
can easily analyze the influence of the relevant micro-structural details on the mechanical behavior. The
geometry of the micro-structures can be obtained using computed tomography (CT) scans. The data from
the CT-scans can then be included into the FCM model in a straightforward fashion.

In this paper, the performance and accuracy of the tetrahedral FCM is demonstrated using two
examples. The first problem is rather academic and examines a cube with a spherical void. Here, we
demonstrate that both the FCM and the FEM achieve the same rates of convergence. As a second example
we consider a more practical problem where we investigate the influence of a pore on the stress dis-
tribution in an exhaust manifold of a diesel particulate filter (DPF). Again, we observe a very good
agreement between the results computed using the FEM and the FCM, respectively.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Finite Element Method (FEM) is a versatile tool to analyze
complex problems in various engineering disciplines. However, it
suffers from the need for boundary-conforming discretizations.
This constraint creates a severe bottleneck in the simulation
process. In [1] it is stated that in complex industrial applications
almost 80% of the overall analysis time is attributed to the
transfer of a computer aided design (CAD) model into the dis-
cretized FE model. Therefore, only 20% of the time is dedicated to
the analysis itself which agrees very well with the authors’
experiences. From this predicament we can infer that a sig-
nificant reduction of the overall analysis time that is needed to
solve an engineering problem using FEM, could be achieved if the
ratio between the real solution time and the time needed to
execute the discretization process were decreased. One idea to
overcome this problem is the application of the Isogeometric
Analysis (IGA). Here, identical higher order spline basis functions

are used for geometry description and approximation of the
independent field variables [2]. A second idea worth mentioning
is the so-called analysis-aware CAD modeling put forward by
Cohen et al. [3]. Despite their respective advantages, we rely on a
third idea to alleviate the mesh generation process.

From the authors’ point of view, the most promising approach
to solve this problem is based on applying the Fictitious Domain
Concept (FDC) [4–7]. The fundamental idea of the FDC is to extend
the physical domain beyond its possibly complex boundaries so
that the generated embedding domain is larger than the original
one but has a very simple geometry. Therefore, Cartesian grids can
be used to discretize the domain in a structured manner. This
procedure can be automated straightforwardly and thus the input
required by the user is minimized. In this class of methods the
Finite Cell Method (FCM) holds a special position [8,9] as it com-
bines the advantages of higher order FEMs [10–15] with those
provided by the FDC. Here, the numerical error is reduced by
elevating the polynomial degree of the higher order shape func-
tions (p-refinement). For smooth problems an exponential con-
vergence can even be reached [10]. On the other hand, the mesh
generation can be easily automated when employing the FDC
[16,17]. These two advantages are inherited by the FCM [18,19].
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In the present contribution the idea of the FCM is extended
from regular hexahedral grids to unstructured tetrahedral
ones. In the remainder of the paper the proposed method is
therefore referred to as the tetrahedral FCM or in short tet-FCM.
In the context of industrial applications, a body-fitted dis-
cretization may already be available, hence the FDC is only
applied for Regions of Interest (RoI) within the structure. That
is to say, only micro-structural details are captured by means of
the FDC. Although the advantage of a fully automated dis-
cretization is lost, we retain the possibility to investigate dif-
ferent micro-structures in parametric studies without
remeshing the computational domain. To start, the idealized
structure is investigated to provide the analyst with insight
into the mechanical behavior which is used to define RoIs
where the influence of discontinuities can be included by
means of the FCM. A second motivation for the development of
the tetrahedral FCM is the capability of tetrahedral elements to
easily generate locally refined meshes. This property is of
special interest for problems with sharp gradients and highly
localized features where a fine mesh is required. To fully
exploit the refinement capabilities of tetrahedra we are forced
to employ unstructured grids, even though the extended
domain is geometrically simple. However, such discretizations
can easily be generated using existing mesh generators.

The paper is organized as follows: in Section 2 we provide a
concise introduction to the fundamental principles of the con-
ventional FCM. Then the basic ideas of the proposed tetrahedral
FCM are discussed in Section 3. Here, we extend the FCM to
geometry-conforming and -nonconforming discretizations in
terms of tetrahedral finite cells. Moreover, the tetrahedral shape
functions are introduced and the spacetree refinement scheme is
discussed. In Section 4 we provide numerical examples that
demonstrate the performance of this novel method. Finally, we
summarize the key aspects of the present paper and briefly discuss
ongoing research activities in Section 5.

2. The finite cell method

In the following, we briefly summarize the basic principles
of the FCM. The point of departure for the derivation of the
weak form are the mechanical equilibrium equations. Let us
start considering a linear elasto-static problem, defined on the
physical domain Ω; that is described by the following varia-
tional form

Bðu; vÞ ¼F ðvÞ; 8 vAV ; ð1Þ
in which V is the admissible space of all test functions. The bi-
linear form B and the linear form F are defined as

Bðu; vÞ ¼
Z
Ω
½Lv�TC½Lu�dΩ; ð2Þ

F ðvÞ ¼
Z
Ω
vTf ;dΩþ

Z
ΓN

vTt dΓ; ð3Þ

where L denotes the linear strain-displacement operator, u is
the displacement vector, v represents the vector of unknowns
of the test functions. Moreover, C stands for the elasticity
matrix, f denotes the vector of body forces and t is the traction
vector, whereas the bar over a variable � signifies a prescribed
value. The traction is defined on the Neumann boundary ΓN of
the structure. In addition to the weak form—Eq. (1)—we also
have to apply boundary conditions as

σn¼ t on ΓN; ð4Þ

u¼ u on ΓD: ð5Þ

Here, σ denotes the stress tensor and n constitutes the outward
normal vector of unit length. On the Dirichlet boundary ΓD

displacement boundary conditions are enforced.
As briefly mentioned in the Introduction— Section 1—a body-

fitted discretization is required, if Eq. (1) is solved by means of the
FEM. By exploiting the FDC [4–7], we circumvent this necessity. The
main idea is that the physical domain under investigation is
embedded into an extended domain Ωex, see Fig. 1. Generally
speaking, Ωex is the union of the physical domain Ω with the ficti-
tious domain Ωfic. The main advantage of this approach is that the
extended domain is of simple geometry and therefore, it can be
discretized straightforwardly by means of regular Cartesian grids, see
Fig. 2. This approach is, however, not limited to quadrilateral or
hexahedral elements but can also be applied to triangular or tetra-
hedral elements as illustrated in Fig. 2. A detailed explanation of the
algorithm is provided in Section 3. To distinguish between body-
fitted finite elements and non-conforming ones, the term finite cell is
used instead. In the sense of the FEM, the independent field variables
are now approximated over the extended domain [8,9]. Accordingly,
Eq. (1) is solved over Ωex and is given by

Bexðu; vÞ ¼F exðvÞ; 8 vAV : ð6Þ
In contrast to Eqs. (2) and (3), the bi-linear form Bex and the linear
form F ex read

Bexðu; vÞ ¼
Z
Ωex

½Lv�TαC½Lu� dΩ; ð7Þ

F exðvÞ ¼
Z
Ωex

vTαf dΩþ
Z
ΓN

vTt dΓ; ð8Þ

where α is the so-called indicator function that accounts for the
geometry of the physical domain as

αðxÞ ¼
1 8 xAΩ
α0 ¼ 10�q 8 xAΩex⧹Ω:

(
ð9Þ

Depending on the problem at hand, q is typically chosen in a range
from 4 to 15. Theoretically, it is also possible to assign a value of 0 to
α0. However, this leads to ill-conditioning of the system matrices on a
scale comparable to that of the behavior caused by choosing too large
a penalty parameter to account for the Dirichlet boundary conditions.
To avoid these conditioning problems, α0 is set to a very small value
that is close to zero. In this way, the variational formulation is stabi-
lized and the energy contribution of the fictitious domain is weakly
penalized [19]. According to [20], α0 can be reliably determined with
respect to the material properties

α0 ¼ ðλþμÞϵn; ð10Þ
where λ and μ denote Lame's constants and ϵn is the standard unit
roundoff.1 Thus, a point in the fictitious domain is penalized by a small
value of α. In [19] Dauge et al. provide a concise mathematical
investigation of the FCM with respect to its convergence properties. In
the mentioned paper it is also shown in which way the solution is
influenced by the penalization parameter α0. Moreover, they proved
that exponential convergence can be achieved depending on the
smoothness of the problem and the choice of α0. If α0 ¼ 0 we observe
that Eqs. (1) and (6) are identical. We have to keep in mind however,
that in contrast to the FEM, the mesh generation process is straight-
forward in the case of the FCM—see Fig. 2—and involves hardly any
computational resources. On the other hand, it is clear that if we
choose a too large value for α0 the contribution of the fictitious
domain to the weak formwill not be negligible anymore and therefore
the results will be arbitrarily inaccurate. In the FCM the effort needed
to generate a geometry-conforming discretization is shifted to com-
puting integrals with discontinuous integrands [9]. The computation

1 ϵn: IEEE 754 machine precision ¼ 2�53 � 1:16 � 10�16.
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