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a b s t r a c t

This work presents micromagnetic simulations of the behavior of ferromagnetic particles, carried out by
use of the finite element method, taking into account, in a special way, the peculiarity of the surface.
Results including the role of the surface in the various mechanisms of magnetization reversal, like the
coherent rotation, the vortex creation and the nucleation/expansion of magnetic domains, as dictated by
the magnitude of the particles, are presented and commented upon.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is widely accepted and proven that surface effects play a crucial
role in the magnetic behavior of materials [1]. Broken bonds,
vacancies, reduced dimensionality and stresses lead to misalignment
between the surface and main volume magnetic moments, and that
because of surface structure defects, which affect intrinsic properties
like the magnetization, the direction and strength of the anisotropy
and the exchange length. Surface contributions are clearly evident in
structures where the surface to volume ratio is quite large, as
nanoparticles and thin films [2,3]. This does not mean that surface
contribution can be omitted in large particles. As already mentioned
by Givord et al. [4] about the physics of coercivity, the magnetization
reversal is constituted by a series of local processes, of which the first,
the nucleation of a reverse magnetization domain, takes place within
a local (surface) defect.

Modeling of the surface effects can be carried out by atomistic
models, as the Monte Carlo [5] method, and also by continuous
micromagnetic models using either the finite difference [6] or the
finite element techniques [7]. But simulations of this kind are
limited at the nanoscale, firstly because of the great importance of
the surface in this region and secondly due to intensive increment
of computational cost with respect to the size.

From the theoretical point of view, Brown's micromagnetic model
[8] states that the surface requires a special treatment and needs to be

described by an additional contribution in the free energy. But in
Brown's equation, first of all, the surface exchange torque will emerge
from the volume exchange – energy integral in the variational pro-
cedure and not as an independent term of the free energy, thus the
surface exchange has only normal to the surface component and not
tangential. Secondly, the surface anisotropy is introduced as an
external torque with normal to surface component in order to balance
the exchange torque. But the latter is not the general case, because the
anisotropy axis can be randomly directed or pointing to a specific
crystallographic direction [9].

In this work micromagnetic simulations are presented by
means of Finite Element Method (FEM) based on a model in which
surface contribution is approximated by an additional and differ-
ent set of partial differential equations (PDE), which includes
tangential variations. The latter are to be solved only for the sur-
face nodes, thus highly reducing computational cost, and enabling
simulations of large particles.

2. Simulation model

In this model the evolution of the magnetization vector is not
described by the trivial approach of the Landau–Lifshitz–Gilbert
(LLG) equation. In the continuum scheme, the derivation of the
PDE is based on a Lagrangian approach, assuming that the rotation

of the magnetization vector M
!

in a elementary volume can be
described by that of a rigid current loop [10]. The resulting PDE has
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where Ms is the saturation magnetization, v and I is the volume
and the moment of inertia associated with the current loop
respectively and τ is the relaxation time of the system, assuming a
homogenous and isotropic Rayleigh type dissipation.

H! is a local effective field that can be defined by the variational
derivative of the free micromagnetic energy. The main contribu-
tions to the micromagnetic energy arise from exchange, magne-
tocrystalline, magnetostatic and Zeeman energies. In this context,
assuming a uniaxial anisotropy
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where ℓ¼
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is the exchange length with A the

exchange stiffness, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Κ1= μοΜ
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is the hardness parameter

withΚ1 the first order anisotropy constant and û the direction of the
easy axis. In the absence of conducting media, the demagnetizing

field, H
!

d, can be calculated from the gradient of a magnetic scalar

potential φ, which obeys the Poisson equation ∇2φ¼ �∇UM
!

.

Finally, H
!

is the external applied field and H
!

th is an artificial thermal
field, added to overcome the unstable equilibrium states, where no
torque acts on the magnetization. This field is thought as a Gaussian
random process in space, obeying

H
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thδ r!� r!0� �
. The smaller the amplitude

Hth becomes, a greater delay in the response of the system appears.
On the other hand, at high values of Hth artificial thermal effects
affect the results. In order to establish the optimal value for Hth, we
examine the behavior of a spherical particle of radius R under con-
ditions of coherent rotation reversal (ℓ=R¼ 1). The anisotropy field
was set to 0.2Μs and the external field was applied parallel to the
easy axis and varied very slowly fromΜs to �Μs. By varying the Hth,
an estimation of the coercive field Hc is made, which according to the
Stoner–Wohlfarth theory is equal to the anisotropy field. For Hth

lower than 10�3Μs the coercive field agrees with theory and, under
these considerations, the was set to 10�4Μs for all simulations.

In the case of high damping limit, the acceleration term (the
term inside brackets in Eq. (1) can be omitted, and the above PDE
takes the form

C
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with C ¼ I= μoτv
� �

A2m�2s
h i

, which describes the evolution of the
magnetization vector in the case of slowly varying external fields
with respect to the time constant C=M2

s .
Using this approach, the three PDE for magnetization components

and the one for magnetic scalar potential are solved simultaneously
through the FEM. A weak form is derived by means of the weighted
residual approach supported with the Galerkin method.

The integral equation for each of the magnetization compo-
nents, Mr r¼ x; y; zð Þ, has the formZ
V
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where wr is the corresponding set of weighted functions, Hr is the
r-component of the effective field and V is the volume of the
magnetic domain. Splitting the effective field in two parts, one

arising from exchange (ℓ2∇2M
!

) and one from all the other

mechanisms (H!
0
), i.e., H!¼H!

0
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The first exchange term in the above equation can be replaced

under vector identity with
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Due to the preservation of the magnetization norm, the equation
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holds. Differentiating once with respect to the three spatial variables
and summing the produce equations results in
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Thus the second exchange term in the Eq. (5) is written as
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Replacing and applying the divergence theorem, the final form
of the integral equation is
Z
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where S is the magnetic domain surface to the non magnetic
environment and n is the unit normal vector to this surface.

In the general case all the magnetic parameters (Ms;A;Κ1; û)
vary in space, but in the case of a homogeneous single crystal
particle, variations can only take place near the surface. In order to
simulate the surface contribution, the particle must be separated
in two magnetic domains, one for the main volume and one for
the surface layer. However, this method becomes very expensive,
from computational aspects, when the volume to surface ratio
becomes very large, due to very dense discretization needed. One
approach to the problem is to consider a surface layer with very
small thickness (for example equal to the unit cell), where the
magnetization vector is not varied along the thickness coordinate.
This can be accepted, considering that the unit cell size is generally
smaller than the domain wall width (Table 1). Then the volume
integral equation for each magnetization component becomes a
surface integral equationZ
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Table 1
Critical lengths for some magnetic materials [16].

Magnetic
material

a (Max unit cell
dimension) [nm]

ℓ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Α=μοΜ2

s

q� �
[nm]

δ 2ℓ=κ
� �
[nm]

a=ℓ a=δ

Ni80Fe20 0.352 4.81 1273 0.07 0.0003
Fe 0.287 3.39 41 0.08 0.007
Co 0.407 4.81 15 0.08 0.027
Nd2Fe14B 1.218 2.69 2 0.45 0.49
SmCo5 0.499 5.09 2 0.10 0.30
Fe3O4 0.840 6.93 46 0.12 0.02
BaFe12O19 2.319 8.20 9 0.28 0.27
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