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a b s t r a c t

An overview of the particularities of the extended finite element method implementation in contrast
with the classical FEM is presented. The most relevant difficulty lies in the integration over elements
containing jumps or singularities, since a classical quadrature rule cannot be applied. We present an
algorithm which, avoiding a casuistic analysis, automatically partitions an enriched element and con-
structs a new quadrature formula for those elements that preserves the integration order from the
original one.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

When the solution of a problem involves jumps or singularities,
a solution obtained by using the standard finite element method
might not accurately approximate the actual solution, or the
method might be very expensive, computationally speaking, either
due to the use of very refined meshes or the need to remesh every
now and then. We can find a large number of examples in real
world with non-smooth solutions, both in solid and fluid
mechanics. Models for cracks, shear bands, dislocations, inclusions
or voids are some examples in solid mechanics and shocks, bub-
bles, or boundary layers in fluid mechanics.

The eXtended Finite Element Method (XFEM), developed by
Moës, Dolbow and Belytschko [7,12], introduces a new metho-
dology that, by means of a local enrichment, not only allows a
more accurate approximation of non-smooth solutions avoiding
the need to remesh and/or refine, which is an obvious computa-
tional advantage, but more importantly, it enables discontinuities
across the interface. The local enrichment is achieved by adding
new shape functions to the base of the approximation space. These

functions are supposed to replicate the singular behaviour of the
solution. There are some references that deal with the imple-
mentation of the XFEM like [2], where an open source architecture
for the method is presented, including several functions in an
Object-Oriented framework, [14] where a numerical imple-
mentation of the XFEM to analyze crack propagation in a structure
under dynamic loading is presented, [17] where the imple-
mentation for modelling 2-d cracks in isotropic and bimaterial
media is described or [9] where the implementation of the XFEM
into the commercial FE software Abaqus is discussed. However,
despite the extensive literature about XFEM, to the authors
knowledge, all element partition procedures found there use a
casuistic procedure to find out which element edges are actually
cut [16,2]. In this work, we will present a technique that allows the
partition of any element, avoiding a casuistic analysis, by means of
an array related to a barycentric representation of the interface [5].
This technique is presented for two and three dimensional
elements.

In this paper we will study in detail the implementation of the
XFEM in a general framework, showing its special features and
difficulties. The main contribution of this work is the introduction
of partition matrices to describe the interface position with respect
to the mesh elements, which are obtained by solving simple linear
systems (as many as the number of faces and edges of one ele-
ment) of at most three unknowns. These matrices are computed
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only once if the interface does not evolve, and even with an
evolving interface, like time dependent or inverse problems, this
procedure is much less computationally expensive than remesh-
ing. The proposed methodology is compatible with level sets
description of the interface or a description based on a polygonal
given by its vertex coordinates. It is also remarkable that these
partition matrices will make automatic the process of integrating
over an enriched element, being unnecessary to determine pre-
cisely how the element is cut by the interface. Indeed, they allow
us to replicate any quadrature formula on the subelements of the
virtual partition, keeping the original order of integration. Besides
we include in this paper how these partition matrices also allow
the projection of discontinuous functions to the XFEM space.

The outline of the paper is the following. First, we will review
the basic concepts of the XFEM and the implications of the pre-
sence of an interface on the mesh. In particular, in Section 2 wewill
focus on the classification of elements and nodes depending on the
kind of shape functions associated to them while in Section 3 we
set a general framework where we introduce the XFEM approx-
imation space. Since the main feature of the XFEM is that the shape
functions might be discontinuous or have singularities on some
elements, which need to be split in order to apply any classical
quadrature rule, our next goal will be the integration on enriched
elements. Therefore, in Section 4 we will present several theore-
tical results that prove some interesting properties of the quad-
rature rules, in particular, given any partition of a standard ele-
ment, they will allow us to adapt any quadrature rule auto-
matically to every subelement. Sections 5 and 6 are devoted to the
obtention of a general technique to split a reference element
automatically without any additional computation. The key steps
are two, the barycentric description of the interface, and the use of
such description to construct the embedding matrices that will
define the subelements. In order to relate the procedure presented
on this paper with the actual implementation, a flow chart of a
generic problem implementation will be shown, and each section
will be related to some step on the chart. In Section 7 we will show
the results obtained applying the techniques presented in this
work to benchmark problems, consisting of a cracked elastic plate
subjected to fracture modes I and II, corresponding to opening and
in-plane shear forces and, finally, in Section 8 we will review the
main contributions of this work. Just for the sake of completeness
we will also include two annexes where the obtention of the
barycentric description of an interface given as a polygonal line is
presented as well as a list of notations used throughout this paper.

2. Sets of mesh nodes and elements

In this section we will introduce the notation used to refer to
the different elements and nodes in a mesh and some character-
istic subsets where different integration techniques are needed.

Let us consider a domain Ω�Rn, n¼2 or 3, discretized by nhe
elements. Although the procedure here described can be applied
also to other elements and higher order functions with minor
changes, for the sake of simplicity in the exposition, throughout
this paper we will consider that the elements are triangles or
tetrahedra and the standard shape functions considered are linear.
We denote by

T h ¼ fTk : k¼ 1;…;neg;
the set of all elements in the mesh, h being the discretizacion
parameter of the mesh, and by

Ph ¼ fX I : I¼ 1;…;nng;
the set of all node coordinates of T h, being nn the number of mesh
nodes. In the following, in order to simplify the notation, the

superindex k will be omitted when there is no room for confusion,
and therefore, T will denote a generic element of T h.

We consider also that there is an interface, S, on the domain,
not necessarily aligned with the elements edges. The interface S is
assumed to be an oriented curve or surface. In the three dimen-
sional case, the normal vector defining the orientation of the
surface S will be denoted by n. When n¼2, we will consider n as
the normal vector to the oriented curve pointing to its right while
walking along it in the direction of the positive orientation
(see Fig. 1). The domain can therefore be split into two domains,
Ωþ , whose outward normal is n and Ω� , its complement, by
extending the interface with enough regularity if necessary as can
be seen in Fig. 2 when n¼2.

Usually, the presence of an interface in the domain leads to
discontinuous fields, whether on displacements, pressure or its
derivatives. Furthermore, if the interface is open, its ending points
might introduce singularities on the solution. That is why several
kinds of enrichment functions might be taken into account and the
classification of nodes and elements will depend on which
enrichment function is used on them.

For the purpose of this paper we will consider two kinds of
enrichment functions: H which will be a discontinuous function
through S, and a set, Ψ , of nψ functions ψ l; l¼ 1;…;nψ , whose
properties will depend on the local behaviour of the solution.
Clearly, how many kinds are used or the number of functions ψ
may vary depending on the kind of problem studied. The gen-
eralization of the methodology presented here to other enrich-
ment functions carries no difficulty.

2.1. Level sets representation

Let us assume that the interface is given by level sets. If it is a
closed interface, one level set function is enough to represent it. If
it is an open interface two or even three level set functions might
be necessary to describe it, as shown in Fig. 3.

In the following we will consider that the interface is given by
two level set functions ϕ and φ (see Fig. 4), since the closed
interface case is a particular case and when more than two level set
functions are needed the generalization is straightforward. There-
fore, the zero level set of the scalar function ϕ corresponds to the
interface when φo0 and the points xAΩ�Rn verifying ϕðxÞ ¼ 0
and φðxÞ ¼ 0 represent the interface ending points.

In a point lying to the left of the interface ϕ will be assigned a
positive value, whereas on the right side it will take negative
values, this is

Fig. 1. Domain decomposition for a closed interface.

Fig. 2. Domain decomposition when the interface is an open path.
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