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a b s t r a c t

The paper proposes a 3D mixed finite element and tests its performance in elasto-plastic and limit
analysis problems. A composite tetrahedron mesh is assumed over the domain. Within each element the
displacement field is described by a quadratic interpolation, while the stress field is represented by a
piece-wise constant description by introducing a subdivision of the element into four tetrahedral
regions. The assumptions for the unknown fields make the element computationally efficient and simple
to implement also in existing codes. The limit and elasto-plastic analyses are formulated as a unified
mathematical programming problem allowing the use of Interior Point like algorithms. A series of
numerical experiments shows that the proposed finite element is locking free and has a good plastic
behavior.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The evaluation of the elastoplastic behavior of structures plays
an important role in structural design. The finite element method
is the most common numerical tool employed for the practical
solution of many engineering problems including the evaluation of
the plastic collapse state of structures. Improvements in the
accuracy and reliability of finite element models for structural
analysis have often been pursued using strategies based on com-
plicated interpolations for the unknown fields. This can obscure
the nature of the mechanical problem which is sometimes of
simple interpretation. A more interesting approach may be the
development of essential models [1,2] capable of capturing the
main features of the structural behavior which could work well in
a wide context. The plastic collapse state of a structure is, for
example, characterized by a continuous displacement field and by
strong concentrations and discontinuities in the plastic strain field.
By simply considering this basic aspect a successful finite element
(FE) model could be built [3]. The robustness of the numerical
process, the accuracy with respect to all the mechanical fields
involved in the numerical formulation and the applicability to a
wide range of geometrical and numerical data are other desirable
features of the model.

Another important aspect of the numerical model is its cap-
ability in analyzing structural problems with constraints on the
possible strains, such as near incompressibility which concerns the
elastic behavior of rubber-like materials and the broad field of
elastic–plastic analysis when the plastic behavior is controlled by
the deviatory part of the stress tensor and in bending problems.
Compatible finite elements are usually unable to ensure the fea-
tures described above and often they suffer from locking phe-
nomena related to the choice of interpolations which are inade-
quate to describe internally constrained strains [4,5].

Several formulations have been proposed as alternatives to the
compatible one in the context of linear elasticity. These include:
the assumed stress formulations that, starting from the pioneering
work by Pian [6], have been developed by several authors [7–9];
the mixed-enhanced elements that use additional strain fields to
augment the compatible strain fields from the simplex interpola-
tions [10]; elements based on the average nodal pressures/strains
that compute the average volumetric strains or strains at nodes
based on surrounding triangles or tetrahedrals [11,12]; the average
nodal strain approach that alleviates the locking due to bending
[13,14]. An assumed-strain finite element technique for the solu-
tion of plasticity problems stemming from the Nodally Integrated
Continuum Element (NICE) formulation is presented in [12].
Another important family of FEM models is represented by the so-
called smoothed-FEM [15] in which the average strain is assumed
on the conflict faces of a background tetrahedral grid. In this
category we also find the Edge-Smoothed and Node-Smoothed
finite element model, developed for 2D problems, which assumes
an average strain in a conflicting region associated to each edge or
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node of a background triangular mesh [16,17]. Smoothed elements
have also been used successfully in plasticity problems [18,19].

In the analysis of elastic–plastic problems the finite element
model should ensure even greater accuracy in determining the
stress field and should be able to truly represent the strong strain
concentration in the presence of the incremental collapse
mechanism and then discontinuous fields. The presence of dis-
continuities makes many standard formulations, which furnish
results sometimes poor in localizing the plastic regions and sen-
sitive to the mesh pattern, of little use. In particular compatible
elements with a point-wise enforcement of the plastic admissi-
bility conditions in a series of Gauss points, even if still the most
popular approach [20] are, in this respect, not the best possible
choice. Recently, several mixed or generalized mixed formulations
have been developed for 2D elasto-plastic problems. By for-
mulating the optimality conditions of the elastoplastic holonomic
step in a weak form, a class of three field elements has been
proposed in [3,21] that allow discontinuities of the plastic multi-
pliers and then of the plastic strains, within the element.

In this work a mixed finite element model which uses the
assumption of an average stress field in the fashion of smoothed
elements, also following the idea underlying the construction of
composite elements [22,1], is proposed. It has been designed with
the aim of describing solutions which can include the effects of
discontinuous plastic strains as in [3]. The element is very easy to
formulate and implement because it is based on simple assump-
tions for the displacement and stress fields, without any burden
deriving from the management of a background mesh. As the
internal variables are locally defined to the element, the proposed
FEM model gives discrete operators with a smaller bandwidth
with respect to existing smoothed FEMs. Furthermore it maintains
the same algebra as a standard mixed element which makes it
simple to implement also in existing codes. As the numerical
results show, the element achieves the favorite framework in the
plastic range where it takes advantage of the absence of volu-
metric locking, the capability of representing discontinuities
within the element and the rather fine meshes required to
describe complex data and constitutive discontinuities. Another
great advantage is the computational efficiency which derives
from the block-like shape of the complementary operator for
which the inversion is trivial with respect to other FEM models for
computing the algorithmic tangent operator.

The paper is organized as follows. Section 2 introduces the
notation of the elastoplastic problem. Section 3 presents the
assumed interpolations for the displacement and stress fields,
reporting the closed-form expression of the discrete compatibility/
equilibrium operator. Section 4 presents a unified variational for-
mulation for both the limit analysis and the discrete holonomic
elastoplastic step of a standard strain-driven formulation. The
numerical results relative to a series of benchmarks are presented
in Section 5. Finally Section 6 reports the conclusions.

2. Basic rules of the elastoplastic theory

We denote with σ½x� and ε½x� the stress and strain fields, and
with x a point of the body domain Ω. Assuming perfectly plastic
material, and omitting the dependence on x to simplify the
notation, the stress σ is restrained to belong to the fixed admis-
sible Elastic Domain

E� fσ : f ½σ�r0;with f ½0�o0g ð1Þ
where f ½σ� is a convex yield function. E will be closed and convex
and its boundary ∂E is characterized by f ½σ� ¼ 0.

The strain increment _ε can be subdivided into the elastic part
_εe and the plastic part _εp. The elastic part is linearly linked to the

stress through the elastic law:

_σ ¼ F�1 _εe ¼ F�1ð _ε� _εpÞ ð2Þ

where F is the compliance operator, symmetric and positive
definite. _εp can be other than zero only if the stress σA∂E and is
defined by the plastic flow rule:

_εp ¼ _γn½σ�; _γZ0; _γ _f ¼ 0; _γ f ¼ 0 ð3Þ

vector n½σ� being contained in the sub-differential ∂f ½σ� of f in σ,
for regular yield functions we have

n½σ� ¼ ∂f ½σ�
∂σ

ð4Þ

In these hypotheses, the following Drucker condition holds:

σy�σ
� �T _εpZ0 8σAE ð5Þ

σy and _εp being related by the flow rule (3), (4).

2.1. The yield functions

Two standard yield functions will be considered. The classical
H.V. Mises yield functions expressed as [20]

f ½σ� � J2½σ��τ20r0 with τ20 ¼
σ2
0
3

ð6Þ

where σ0 is the uniaxial yield stress, J2½σ� is the second invariant of
the deviatoric stress tensor, 3J2½σ� ¼ 1

2σ
TPσ and

P ¼
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; ð7Þ

To study pressure-sensitive materials [20] we also introduce the
Drucker–Prager conical yield surface in which the effect of the first
invariant I1½σ� of the stress tensor is considered

f ½σ� � αI1½σ�þ
ffiffiffiffiffiffiffiffiffiffi
J2½σ�

p
�τ0r0 ð8Þ

where α and τ0 are material parameters obtained from the friction
angle φ and the cohesion c as

α¼ 3 tan φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ12 tan φ2

p ; τ0 ¼
3cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ12 tan φ2
p ;

3. Interpolations of the displacement and stress fields

With reference to 3D problems, a composite tetrahedral mesh
is assumed over the domain lying in the ðx; y; zÞ space. Within each
tetrahedral element the displacement field is described by a con-
tinuous interpolation expressed in terms of parameters located on
its boundary sides, while the stress field is represented by a dis-
continuous description obtained by introducing a subdivision of
the element into four tetrahedral regions. Each face of the element
is a triangle with six nodes [23].

3.1. The mixed 3D finite element

The tetrahedral volume co-ordinate system makes the
description of the relevant quantities of the discrete model com-
pact and simple. The tetrahedral co-ordinates ðξ1; ξ2; ξ3; ξ4Þ are
related to the Cartesian ones ðx; y; zÞ by the transformation [23]
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