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a b s t r a c t

In this paper, we will introduce and discuss new parameterizations to solve elastoplasticity problems by
using the Asymptotic Numerical Method (ANM). The elastic–plastic transition and the elastic unloading
are taken into account by using the regularization technique proposed in Assidi et al. (2009) [1] and
Zahrouni et al. (2005) [2]. The ANM is a family of algorithms for path following problems; each ANM step
is based on the computation of truncated vectorial series with respect to a path parameter “a” (Cochelin
et al., 1994 [3]). We present and discuss different parameterizations in ANM algorithm for solving
elastoplasticity problems, namely the definition of the path parameter “a”; two concepts of para-
meterization are introduced and compared: a Riks type parameterization which is a combination of both
load parameter and time and a parameterization based on the minimization of a rest (Mottaqui et al.,
2010 [4,5]). We will also discuss and compare the definitions of the step length in the case of elasto-
plasticity. Aiming to analyze the quality of the solutions, we will compute and study the residue of all the
equations for different values of tolerance parameters of the ANM continuation. To illustrate the per-
formance of these proposed parameterizations and step length definitions, we will give numerical
comparisons on structural elastoplasticity problems with the Newton–Raphson method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate a new procedure to solve the
problems of structural mechanics with an elastic–plastic con-
stitutive law, where the equations can be written as:

R UðtÞ;dUðtÞ
dt

;CðtÞ
� �

¼ 0 ð1Þ

where R is the so-called residual vector, U(t) is the unknown vector
and C(t) is a time-dependent scalar loading parameter and t
indicates the time parameter . The computation of solution paths
of nonlinear problem (1) are generally done by predictor–corrector
algorithms. The most widely used techniques are those of Newton
types [6–10].

The chosen algorithm to solve the nonlinear problem (1)
belongs to the family of Asymptotic Numerical Methods ANM
[3,11]. Classically, this consists of expanding the unknown U(t) and
C(t) of the nonlinear problem (1) in power series with respect to a
path parameter “a”. As the problem (1) is time dependent, we

suggest in this work to consider the path parameter “a” as a time
function. In Assidi et al. [1], the path parameter has been chosen
equal to the time t. Within this framework and using the identity
dU
dt ¼ dU

da
da
dt , each step length of the continuation method is repre-

sented by a truncated power series at order N as follows:

UðaÞ ¼ U0þ
Xk ¼ N

k ¼ 1

akUk

CðaÞ ¼ C0þ
Xk ¼ N

k ¼ 1

akCk

aA ½0; amax� ð2Þ

The path parameter shall be defined as a time function using two
concepts. ðU0;C0Þ is a known and regular solution corresponding
to a¼0 and N is the truncated order of the series. The terms of the
series (2) are solutions of a family of well-posed linear problems.
After a finite element discretization, these problems can be solved
recursively by decomposing only one tangent stiffness matrix by
step length. The validity range ½0; amax� is deduced from the com-
putation of the truncated vectorial series, each step length can be a
posteriori defined using convergence properties of the series
which lead to naturally adaptive step length algorithm. The step
lengths amax are computed a posteriori by the two following
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estimations [11]:

amaxd ¼ ϵd
JU1 J
JUN J

� � 1
N� 1

; amaxr ¼ ϵr
1

JFnlNþ1 J

 ! 1
Nþ 1

ð3Þ

where ϵd and ϵr are given tolerance parameters, Uk is the unknown
vector at order k and FnlNþ1 are the ANM right-hand sides at order
Nþ1. In Assidi et al. [1], we have used as step length the minimum
of the step lengths (3)-a computed from the series of each com-
ponent of the unknown vector U. The influence of the tolerance
parameters ϵd and ϵr on the quality of the solution is analyzed by
studying the evolution norm of the residual vector R versus the
time parameter.

The ANM, which supposes an analytical representation of the
response curve, cannot be applied directly to non-regular pro-
blems for which governing equations are not analytical functions
of the unknowns.

The method of solving non-regular problems has shown its
efficiency for unilateral contact problems [12], for plastic behavior
within deformation theory of plasticity [13], for viscoplastic laws
with Norton–Hoff model [14] and for punching problems coupling
several nonlinearities [15].

A first study, which consists in employing a continuation pro-
cedure, based on ANM to solve the plasticity problems, has been
recently proposed in [1]. A first idea of this algorithm has been
proposed by the authors for the one-dimensional case in [2]. The
elastic–plastic behavior exhibits two states, the elastic state and
the plastic state, the elastic–plastic transition depends only on the
stress state whereas the elastic unloading implies the use of the
time derivative of these stresses [16]. To define a single regular
constitutive relation that takes into account both transitions, we
have regularized the two corresponding unilateral conditions. The
key point is to establish a regular relation between two scalars: the
yield function and the plastic multiplier. The non-regular problem
is replaced by the obtained regular problem of Prandtl–Reuss. The
efficiency of the proposed continuation method has been shown
throughout several tests within structural mechanics with plane
stress analysis and by using finite element discretization [1,2].

The main difficulty in view to apply the ANM for elastoplastic
structures is the definition of parameterizations of the ANM
curves, i.e. the definition of the path parameter a, the definition of
the step length and when the considered problem is singular. The
present paper is focused on these two first points. The singularity
problem is solved in the work of Assidi et al. [1].

We present and discuss different parameterizations in ANM
algorithm for solving elastoplasticity problems, namely the defi-
nition of the path parameter “a”. In Assidi et al. [1] and in Zahrouni
et al. [2], the parameterization has been defined as a¼t and the
step length has been defined as the minimum of amaxd of the
components of the unknown vector U. In this work, we suggest
using the parameterizations as those defined in [4,5]. Two para-
meterization concepts will be used. The first concept defines the
parameter “a” as a sort of Riks parameterizations [6] between the
time-dependent scalar loading parameter C(t) and the time para-
meter t. The second parameterization will be based on the concept
of the minimization of a rest [4,17,18]. In this case no auxiliary
equation is used.

We will also discuss and compare the definitions (3) of the step
length in the case of elastoplasticity. To illustrate the performance
of these proposed parameterizations and step length definitions,
some numerical comparisons on structural elastoplasticity pro-
blems will be given.

2. Regularized model

The aspects concerning the regularization of an elastoplastic
problem are given in Appendix A. Full details are outlined in
references [1,2]. We consider an elastoplastic solid occupying a
domainΩ and subjected to an external load CðtÞF on the boundary
∂Ω; where F is a given vector and C(t) is a time-dependent load
parameter. The equilibrium equation can be written as follows:Z
Ω
σ : δϵ dΩ¼ CðtÞ

Z
∂Ω

Fδu ds ð4Þ

where σ and ϵ indicate respectively the Cauchy stress tensor and
the strain tensor and u is the displacement. The equations of the
regularized elastoplastic model of Prandtl–Reuss in small defor-
mation (see Appendix A) which takes into account the elastic
unloading in the 3D case [1] can be written as:

_σ ¼D : ð _ϵ� _ϵpÞ
_ϵp ¼ _λn

qn¼ 3
2
σd

q2 ¼ 3
2
σd : σdþη24σ

2
y

Z ¼ GH
_λ ¼ _ϵcZ

HðH�ξÞ ¼ η22
_ϵcξ¼ n : _ϵ
G:Den¼ η1

Den¼ σe

2μ
Fþη1

3
2
þ h
2μ

ð1þ f Þ
� �

F ¼ f 2

fσe ¼ q�σe

σe ¼ σyþhϵp

ϵp2 ¼ 2
3
ϵp : ϵp ð5Þ

where σd and ϵp indicate respectively the stress deviatoric tensor
and the plastic strain tensor, D is the elastic material stiffness
tensor, μ is the shear modulus, λ, n, q, σe, ϵp and f are the plastic
multiplier, the normal to the surface charge, the equivalent stress,
the effective stress, the equivalent plastic strain and the load
function respectively, σy and h represent respectively the yield
stress and the module of work hardening for an elastoplastic
material with linear work hardening, the regularization functions
H and G are introduced into the model to overcome the difficulty
of singularities (see Appendix A), η1, η2 and η4 are the regular-
ization parameters and _ϵc is a characteristic strain rate, Z, Den and
F are auxiliary variables introduced with the aim to write all
relationships in a quadratic form, the sign _ð�Þ denotes the deriva-
tive with respect to the time parameter t.

In order to evaluate the ability of the proposed algorithm in a
typical process (elastic, plastic, elastic unloading), we impose a
time-dependent load parameter C(t) given by the following
hyperbolic relation:

CðtÞ�Cm

Tm
t

� �
CðtÞ�Cm

Tm
ð2Tm�tÞ

� �
¼ η3C

2
m ð6Þ

where Cm and Tm are the given parameters and η3 is a regular-
ization parameter. The problem defined by Eqs. (4)–(6) can be
written in the form (1) if we introduce the following mixed vari-
able:

U ¼ t〈u;σ; ϵp;n; q;σe; f ; λ;G; F; ϵp;Den; ξ;H〉 ð7Þ
In the following section, we discuss how to establish a continua-
tion procedure based on the ANM to solve the structural problem
(4)–(6) with an elastic–plastic constitutive law.
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