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a b s t r a c t

In this paper, a nonlinear inelastic time-history analysis procedure for space semi-rigid steel frames
subjected to dynamic loadings is presented. Geometric nonlinearities are taken into account by using
stability functions and the geometric stiffness matrix. The spread of plasticity over the cross section and
along the member length is captured by monitoring the uniaxial stress–strain relation of each fiber on
selected sections. The nonlinear semi-rigid beam-to-column connection is simulated by a multi-spring
space element. Three main sources of inelastic hysteretic, nonlinear connecting, and structural viscous
damping are considered. The differential equation of motion is solved by the Hilber–Hughes–Taylor
method combined with the Newton–Raphson method for the equilibrium iterative procedure. Using
only one element per member in the structure modeling, the nonlinear time-history responses which
are predicted by the proposed program compare well with those given by commercial finite element
packages and other available results. Numerical examples are presented to verify the accuracy and
efficiency of the proposed method.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In conventional analysis and design, beam-to-column connec-
tions are usually assumed to be fully rigid or ideally pinned joints.
The real behavior of beam-to-column connections is a nonlinear
curve which depends on the configuration of connections. Such
connections are called semi-rigid connections which play a role in
transfering a part of moments from elements to other ones while
the rest is resisted by themselves. The experimental studies
showed that semi-rigid steel frames feature ductile and stable
hysteretic behavior when the connections are designed appro-
priately [1–4]. The energy is dissipated through hysteretic loops of
semi-rigid connections, which are one of the important damping
sources of structures.

There are two common nonlinear analytical approaches for
space steel framed structures: the plastic hinge methods (con-
centrated plasticity) [5–12] and the plastic zone methods (dis-
tributed plasticity) [13–17]. The plastic hinge methods [7–12]
using stability functions obtained from the closed-form solution
of the beam–column element subjected to end forces can
accurately capture the second-order effects using only one or

two elements per member. Material nonlinearity is considered by
the lumped plastic hinges at the two ends of the member. The
effects of distributed plasticity and residual stress are indirectly
taken into account by using the reduced tangent modulus
approach. However, the plastic hinge methods are limited due
to their incapability of capturing the more complex member
behaviors that involve torsional–flexural buckling, local buckling,
and severe yielding under the combined action of compression
and bi-axial bending, which may significantly reduce the load-
carrying capacity of a structure [14]. Furthermore, the hinge
methods have shown to over-estimate the limit strength when
structural behavior is dominated by the instability of a few
members [18]. Also, it may inadequately give information as to
what is happening inside the member because the member is
assumed to remain fully elastic between its ends. In the mean-
while, the plastic zone methods based on interpolation shape
functions requires members to be divided into several elements
to accurately predict the second-order effects and spread-of-
plasticity behavior of steel framed structures. It is generally
recognized to be an “exact” and computationally expensive
solution compared with the plastic hinge methods.

In recent years, Alemdar and White [15] presented several
beam–column finite element formulations for full nonlinear dis-
tributed plasticity analysis of planar frame structures. The funda-
mental processes within the derivation of displacement-based,
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flexibility-based, and mixed element methods using Hermitian
cubic polynomial functions are summarized. These formulations
are presented using a total Lagrangian corotational approach and
are also applicable to general beam–column elements for space
structural analysis. Chiorean [16] proposed a beam–column
method for nonlinear inelastic analysis of 3D semi-rigid steel
frames. The nonlinear inelastic force–strain relationship and
stability functions are used in representing the inelastic behavior
and second-order effects, respectively. The advantage of this study
is its ability to trace the spread of plasticity along the member
length by using only one beam–column element per framed
member in analysis modeling. However, it seems that the shape
parameters a and n of the Ramberg–Osgood model and α and p of
the proposed modified Albermani model for the force–strain
relationship of the cross-section, which considerably affect the
inelastic behavior of the steel frames, are not consistently used.
Mazza [19] proposed a distributed plasticity model which a frame
member are simulated by two plastic-zone segments with lengths
lPi; lPj at the ends of the member and one elastic segment with
length l at the middle. This method cannot accurately simulate
spread of plasticity along the length of the member. To overcome
the limitations of the above mentioned studies, this study will
develop a fiber beam–colum element based on stability functions
for nonlinear inelastic time-history analysis of space steel frames
with semi-rigid connections.

This study presents a second-order spread-of-plasticity
approach for nonlinear time-history analysis of space semi-rigid
steel frames. The second-order effects are considered by the use of
stability functions obtained from the closed-form solution of the
beam–column element subjected to axial force and bending
moments at the two ends. The spread of plasticity over the cross
section and along the member length is captured by tracing
uniaxial stress–strain relations of each fiber on the cross sections
located at the selected integration points along the member
length. Warping torsion and lateral–torsional buckling are ignored.
An independent zero-length connection element with six transla-
tional and rotational springs is developed for beam-to-column
joints with various connection types. This is efficient because
modification of the beam–column stiffness matrix considering
semi-rigid connections is unnecessary and the connection is ready
to integrate with any element type. The Kishi–Chen three-
parameter power model [20] and the Richard–Abbott four-
parameter model [21] are applied for representing the moment–
rotation relationship and predicting the instantaneous stiffness of
connections. A numerical procedure based on the Hilber–Hughes–
Taylor method combined with the Newton–Raphson method is
developed to solve nonlinear differential equations of motion.
Several numerical examples are presented to verify the accuracy,
efficiency, and applicability of the proposed proceduce in predict-
ing nonlinear inelastic time-history responses of space steel
frames with semi-rigid connections.

2. Formulation

2.1. Nonlinear beam–column element

2.1.1. The effects of P-small delta and shear deformation
To capture the effect of axial force acting on bending moment

through the lateral displacement of the beam–column element (P-
small delta effect), the stability functions reported by Chen and Lui
[22] are used to minimize modeling and solution time. Generally,
only one element per member is needed to accurately capture the
P-small delta effect. From Kim and Choi [8], the incremental force–
displacement equation of space beam–column element accounting

for transverse shear deformation effects can be expressed as
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where ΔP, ΔMyA, ΔMyB, ΔMzA, ΔMzB, and ΔT are the incremental
axial force, end moments with respect to y and z axes, and torsion,
respectively; Δδ, ΔθyA, ΔθyB, ΔθzA, ΔθzB, and Δϕ are the incre-
mental axial displacement, joint rotations, and angle of twist,
respectively; E, G and J are the elastic modulus and shear modulus
of a material and the torsional constant of a cross section
respectively; C1y, C2y, C1z, and C2z are bending stiffness coefficients
accounting for the transverse shear deformation effects and are
defined as

C1y ¼
k21y�k22yþk1yAszGL
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ð2Þ
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where k1n ¼ S1n EIn=L
� �

and k2n ¼ S2n EIn=L
� �

; S1n and S2n are stabi-
lity functions with respect to the axis of n n¼ y; zð Þ and are
expressed as

S1n ¼
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where k2n ¼ Pj j=EIn. EA and EIn denote the axial and bending
stiffness of the beam–column element and are integrated as
follows:
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in which s is the total number of monitored sections along an
element; m is the total number of fibers divided on the monitored
cross-section; wj is the weight coefficient for Lobatto quadrature at
the jth section [23]; Ei and Ai are the elastic modulus of the
material and the area of ith fiber, respectively; Iyi and Izi are the y-
and z-axis moment of inertia of ith fiber around its centroid; yi and
zi are the coordinates of ith fiber to the centroidal bending axis of
the cross-section as shown in Fig. 1. The element force–deforma-
tion relationship of Eq. (1) can be expressed in symbolic form as
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