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a b s t r a c t

This paper presents an efficient method to implement a damage law within an explicit time-integration
scheme, in an open-source object-oriented finite-element framework. The hybrid object/vector design of
the framework and implementation choices are detailed in the special case of non-local continuum
damage constitutive laws. The computationally demanding aspect of such constitutive laws requires
efficient algorithms, capable of using High Performance Computing (HPC) clusters. The performance of
our approach is demonstrated on a numerically and physically challenging 3D dynamic brittle-
fragmentation test case. An almost perfect scalability is achieved on parallel computations. The global
dynamics and energy terms are in good agreement with classical cohesive models’ predictions.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the different mechanisms involved in the frac-
ture of brittle materials under dynamic loading, such as crack
branching, or the transition between different types of crack
propagation (trans/intra-granular) is key in the design of new
materials. A way to study these mechanisms is by the use of
numerical methods. Many numerical approaches can be found in
the literature, such as peridynamics [1,2], eigenerosion [3], or
finite-element methods with additions to represent a discontinu-
ity like cohesive models [4], the eXtended Finite-Element Method
(X-FEM) [5], or continuum damage with localization limiters such
as delayed damage [6], second gradient [7] or non-local integral
[8].

In the context of this paper, the continuum damage with non-
local integral type limiters will be used due to its ease of
implementation and the fact that it is well-established for at least
static-fracture mechanics problems [8,9]. This method however is
computationally demanding, since in the constitutive law a
neighborhood of each material point has to be taken into account.
Therefore, the use of parallelism in the implementation of such a
method can decrease the execution times considerably. To the
author's knowledge there are only pure Cþþ object-oriented or
pure Fortran implementations for the explicit non-local method
implementation as shown in [10] or [11]. Contrasting such single

programming paradigm implementations, this paper will present
a new code developed by the authors and named Akantu [12], that
aims to combine the advantages of both views: the genericity and
extensibility of the object-oriented paradigm of Cþþ , and the
vectorial efficiency present in Fortran. In this code we included
parallelism capabilities with the idea of combining performance
with ease of implementation of complex algorithms.

This paper is organized in three major sections. First it presents
some reminders on the finite-element method, particularly in the
context of non-local continuum damage. Second, it explains the
implementation details in the case of library Akantu. Third, it
presents a 3D fragmentation test-case that validates the method.

2. Finite-element formulation

2.1. Work-flow

In this paper we will assume the case of continuum solid
mechanics with an explicit time-integration scheme. If we con-
sider a central difference scheme, the finite-element formulation
can be reduced to the following equations that must be solved
iteratively:

M €unþ1 ¼ f extnþ 1
�f intnþ 1

ð1Þ

unþ1 ¼ unþΔt _unþ1
2Δt2 €un ð2Þ

_unþ1 ¼ _unþ1
2Δt €unþ1

2Δt €unþ1 ð3Þ
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In these equations, un, _un and €un represent the approximations
of the displacement, velocity and acceleration at a time tn, M is the
mass matrix, and f extn , f intn are the external and internal forces
respectively. Finally, Δt is the time step defined such that
tnþ1 ¼ tnþΔt. In order to have a stable explicit time-integration,
Δt is submitted to the Courant–Friedrichs–Lewy condition [13].

Eqs. (2) and (3) are usually rewritten in a predictor/corrector
way, which leads to a possible separation of a time iteration in four
stages: prediction of the kinematic variables, computation of the
new internal forces, resolution of the acceleration and correction
of the kinematic variables.

In this formulation, the material's behavior is taken into
account in the computation of the internal forces.

2.2. Constitutive model

The forces are computed from the stress at each material point.
Therefore, for all such points, the constitutive law has to be
defined.

In the simplified case of a linear elastic and brittle material,
isotropic damage can be represented by a scalar variable d, which
varies from 0 to 1 for no damage to fully broken material
respectively. The stress–strain relationship then becomes

σ ¼ ð1�dÞC : ε

where σ and ε are the Cauchy stress and strain tensors, and C is
the elastic stiffness tensor. This formulation has been proven to
lead to a localization of the strain-softening region [14].

As previously mentioned, there exists many localization limit-
ers. In this paper, we will only consider the integral non-local
approach. This approach consists in replacing a variable v in the
constitutive law with its average vnl on the direct neighborhood
(4). In continuum damage models this is usually done on a scalar
variable that is used as a criterion for damage evolution.

vnlðxÞ ¼
Z
N
αðx;ωÞvðωÞ dω ð4Þ

where N is the neighborhood of interest and αðx;ωÞ is the weight
function defined as

αðx;ωÞ ¼ αoðJx�ωJ ÞR
NαoðJx�ηJ Þ dη ð5Þ

The non-normalized actual weight function αo can have differ-
ent expressions [15]. One that is commonly used is the bell-shaped

function (6).

αoðrÞ ¼ 1� r2

R2

� �2

for rrR

0 otherwise

8><
>: ð6Þ

In this weight function, R defines the radius of the sphere N. In
some cases it can be related to a material parameter, but in most
cases R is an internal parameter that has to be chosen carefully to
get meaningful results.

To completely define the damage model, we still have to define
an evolution law for the damage d. Many evolution laws can be
found in the literature. For the purposes of this paper, we will use
a simple isotropic damage evolution based on an energy criterion
[16,17].

Y ¼ 1
2 ε : C : ε ð7Þ

F ¼ Y�Yd�Sd ð8Þ

d¼
min

Y�Yd

S
; 1

� �
if F40

unchanged otherwise

8><
>: ð9Þ

In this formulation Y is the strain energy release rate, Yd is the
rupture criterion and S is the damage energy. The non-local
version of this damage evolution law is constructed by averaging
the energy Y.

3. Effective implementation

3.1. The philosophy behind Akantu

We implemented an efficient general purpose finite-element
library called Akantu [12]. As a demonstration of the possibilities
of this library, we implemented in it the model presented in the
previous section. This open-source object-oriented library distin-
guishes itself from other finite-element codes by its hybrid object/
vector architecture. It uses the object-oriented view for “high-
level” algorithms. This abstraction endows the code with proper-
ties such as re-usability, genericity, and ease-of-extension. But for
“low-level” processes, such as loops on elements, nodes or
material points, the mechanisms of object-oriented programming
such are virtual calls can be slow. Consequently, in Akantu the
choice was made to code these critical loops in a vectorial way, i.e.
similar to a C or Fortran manner. This hybrid implementation style
uses the advantages of both the object-oriented and the proce-
dural programming paradigms. To understand better this hybrid

Fig. 1. Mesh data structures for different programming paradigms. (a) Object-oriented, (b) vectorial and (c) object/vector.
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