
Isogeometric local h-refinement strategy based on multigrids

Alexandre Chemin a,n, Thomas Elguedj a, Anthony Gravouil a,b

a Université de Lyon, INSA-Lyon, LaMCoS, CNRS UMR 5259, F-69621 Villeurbanne, France
b Institut Universitaire de France, France

a r t i c l e i n f o

Article history:
Received 13 October 2014
Received in revised form
4 February 2015
Accepted 19 February 2015

Keywords:
Isogeometric analysis
Local h-refinement
Controlled accuracy
Full-multigrid method

a b s t r a c t

This paper presents an isogeometric local h-refinement algorithm based on localized multigrid
resolution dedicated to computational mechanics. This algorithm leads to a solution on a quasi-
optimal refined mesh initially unknown for a given precision criterion. Moreover, it allows us to
circumvent the obstacle of refinement of non-straight geometric boundaries existing in full multigrid
algorithms with isoparametric finite element analysis.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multigrid algorithms are iterative solvers showing interesting
rates of convergence [1–3]. They were originally introduced to
solve fluid mechanics problems using finite differences by
Brandt and Livne [4] and were extended to solve solid mechanics
problems with finite element analysis by Parsons and Hall [5,6].
Multigrid resolution has already been used with IGA as a way to
reduce computational time by Gahalaut et al. [7]. This kind of
resolution is designed for problems where the fine discretization
is known a priori.

There has been in the recent years quite an extensive work on
designing efficient solvers and preconditioners that are well suited
to isogeometric analysis (IGA). Up to our knowledge the first work
on specific isogeometric preconditioners is attributed to Beirão da
Veiga et al. [8] and Buffa et al. [9]. Multigrid (MG) and multilevel
methods were also coupled with IGA to design efficient iterative
solvers, see for example the work of Gahalaut et al. [7,10] and
Donatelli et al. [11]. Finally one can also cite the work of Collier
et al. [12] on the performance of standard iterative solvers for IGA.
It is important to note that in the work presented in this paper, our
goal is not to design efficient iterative solvers for IGA based on
multigrid methods. We suggest that multigrid methods can be
used to obtain a new local h-refinement strategy for IGA with
controlled accuracy of the solution. Consequently, the proposed

work falls into the class of isogemetric methods with local
h-refinement such as T-splines [13,14], LR splines [15] and hier-
archical b-splines [16,17].

The use of the full multigrid algorithm (FMG) with finite
element analysis (FEA) combined with an error indicator has been
developed as a solver with adaptative refinement. This algorithm
is very efficient but presents a loss of accuracy when the refine-
ment of non-straight boundaries is required as shown in Adams
and Taylor [3] and Biboulet et al. [18]. One way to deal with this
difficulty is to go back to the CAD geometry each time a refinement
is needed. We propose here a way to circumvent this problem
using IsoGeometric Analysis. Indeed, IGA allows an exact descrip-
tion of the CAD geometry even with non-straight boundaries [19].
Refinement of such meshes can be done keeping the exact
description of the CAD geometry. In this paper, the MG resolution
is used as an automatic local mesh refinement tool with controlled
accuracy. Here the desired fine mesh is not known a priori and
depends on the required level of accuracy on the solution.

This paper is organized as follows. First a short introduction to
MG techniques with FEA and a short introduction to IGA with
NURBS are presented. Then, we present a localized FMG with IGA
algorithm. Finally, the performances of this algorithm are analyzed
on several examples.

1.1. Multigrid methods applied to finite element analysis

1.1.1. Principle of multigrid resolution
MG methods are mainly based on the smoothing properties

of iterative solvers such as Gauss–Seidel or preconditioned
conjugate gradients. In other words, MG methods are based on
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the ability of these solvers to capture the high frequency error in
the solution (see [5,6,20]). One iteration of the chosen iterative
solver is called a smoothing step. The first idea is to exploit this
property using two grids, in the well-known correction scheme.
These two nested meshes of the same geometry cover the whole
considered domain which is therefore a global MG approach.
Quantities on the fine and coarse grid are noted respectively
by the f and c subscript. K is the stiffness matrix, F are the
generalized forces and U is the discretized displacement field
we are looking for using a FE discretization of a given linear
solid mechanics problem.

Here, the aim of the CS is to solve the equilibrium equa-
tion arising from a static linear elastic analysis on the fine grid
KfUf ¼ Ff .

1. The first step is to do ν1 smoothing steps on the fine grid with
an iterative solver initialized with an initial guess U0

f , obtaining
a solution U

0
f .

2. Assuming that the iterative solver decreases the high frequency
error, then the difference E0

f between U
0
f and the exact solution

we are looking for Uf (E0
f ¼Uf �U

0
f ) is only composed by low

frequency error. Consequently E0
f can be computed on the

coarse grid.
3. Therefore, the residual R0

f ¼ Ff �KfU
0
f is transferred on the

coarse grid with a restriction operator R, and the low fre-
quency error is computed with a direct solve on the coarse grid

KcE0
c ¼RðR0

f Þ.
4. Then, the displacement coarse correction is transferred on the

fine grid with a prolongation operator P, and the solution on

the fine grid is corrected as bU0
f ¼U f þPðE0

c Þ.
5. Finally, ν2 smoothing steps are done on bU0

f to correct the high
frequency error introduced by the prolongation operator giving

the solution U1
f .

These operations form a two grids MG cycle. The two grids MG
cycle is repeated until convergence of the solution is reached. The
algorithm is presented in Fig. 1.

This algorithm can be generalized for N grids. Indeed, if the
direct solve on the coarse grid is too expensive, the CS can be
applied recursively with a limited number of MG cycles γ. Fig. 2
shows a MG cycle with three grids for γ ¼ 1 (V-cycle) and γ ¼ 2
(W-cycle). Applied to N grids, MG solvers can be quasi-optimal and
reach a complexity in OðnÞ (where n¼ sizeðKf Þ).

In practice, the convergence rate of a MG resolution can
depend on the quality of the initial guess U0

f . A way to avoid
such a dependency is the FMG resolution. For a two grid
resolution with the CS, the idea consists in using as an initial
guess on the fine grid U0

f as the prolongation of the solution
computed on the coarse grid U0

f ¼PðUcÞ with KcUc ¼ Fc . The
generalization to N grids is represented in Fig. 3. Solutions
boxed in Fig. 3 represent the converged solutions on a given
level of discretization.

1.1.2. Definition of prolongation and restriction operators
In the previous part prolongation and restriction operators P

and R are mentioned. There are some constraints on these
operators dealing with primal quantities (U) and dual quantities
(R). We can see in Fig. 4 a representation of the relation between
these quantities in the two grids case.

A condition we can impose to these operators is to preserve
internal work for any couple ðUc; Ff Þ
〈Uc; Fc〉¼ 〈Uf ; Ff 〉; 8ðUc; Ff Þ

3UT
cRFf ¼UT

cPTFf ; 8ðUc; Ff Þ
3R¼PT ð1Þ

The conservation condition on the internal work gives us a
relation between the two operators P and R. For a given
prolongation operator P we have no choice on the restriction
operator if we want this condition to be verified (Eq. (1)).

It is possible to impose another kind of condition: for all Uc , a
prolongation, a solve on the fine grid, a restriction and a solve on
the coarse grid have to keep Uc unchanged

KcUc ¼ Fc; 8Uc

3KcUc ¼RKfPUc; 8Uc

3Kc ¼RKfP ð2Þ
It gives a condition on stiffness matrices of the two grids (Eq.

(2)). MG resolution using this approach are algebraic MG
resolutions (see [21]). We are not going to use that kind of
approach here because it implies a new computation of all
stiffness matrices each time a new grid is added which can
become expensive.

Usually in MG resolution with FEA, interpolation operators
are used as prolongation operators. We will see further in this
paper that this solution is not pertinent in MG resolution
with IGA.

1.1.3. Adaptative local h-refinement based on multigrids
The FMG solver presented in Section 1.1.1 is suited for problems

with a known final mesh. It is possible to build an algorithm with
automatic refinement using an error indicator with an FMG
resolution. In this case only the coarse discretization is known a
priori and the successive grids are built locally with information
from the error indicator (see Fig. 5).

This algorithm uses several levels of discretization, but all the
meshes are defined on the whole structure. It implies that
quantities of interest (displacement in the linear elastic case) are
computed on areas with identical discretization on several
meshes. An example with three levels of discretization is displayed
in Fig. 6. With a MG algorithm with global refinement, quantities
of interest are computed on blue areas which have the same
discretization on the three grids and on red areas which have the
same discretization on the last two grids. It is possible to save
computational cost by avoiding the calculation on blue and red
areas for each grid. It is the principle of localization in MG
algorithms.

The idea of localization is to refine only the area where the level
of accuracy is not satisfied (see Fig. 7).Fig. 1. Correction Scheme algorithm.
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