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a b s t r a c t

This paper deals with modeling and model reduction methods intended to sandwich structures with
viscoelastic materials. The modeling step is carried out by combining the First order shear deformation
theory (FSDT) with the Golla–Hughes–Mc Tavish (GHM) model. The GHM model introduces auxiliary
coordinates to take into account the frequency dependence of viscoelastic materials which, combined
with the finite element method (FEM), leads to large order models. This paper focuses on the use of
model reduction methods. The reduced models compared to the full model are illustrated by three
numerical examples in order to outline the performance, the practical interest of these methods and
their validity domains.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The use of viscoelastic [1,2] sandwich structures [3] has been
regarded as a convenient strategy for many industries such as
aeronautics, marines and automotives. In fact, these structures present
a high way of vibration control in terms of lightweight and high
specific stiffness, especially when they incorporated viscoelastic
materials.

Several theories [4–7] were developed in order to approximate the
displacement and the mechanical deformation of such structures. One
of the well-known and useful theories is the classical theory of plates
(CPT), which assume that a plane section initially normal to the
midsurface before deformation remains plane and normal to that
surface after deformation. Hence, this theory neglects the effect of
shear deformations and leads to inaccurate results for laminated
plates. So, it is obvious that transverse shear deformations have to
be taken into account in the analysis. Thus, the first order shear
deformation theory (FSDT) introduced by Reissner and Mindlin [4,7]
takes into account this effect and assumes a linear variation of the
midplane displacements through the thickness of the structure. This
method has a significant advantage due to its simple implementation
and low computational cost. Another laminated theory based on
Reddy's refined [8] high order shear deformations theory (HSDT)
which includes both bending and shear effects was carried out by
Ferreira et al. [9], and by Chugal and Shimpi [10]. Unfortunately, this
method requires a prohibitive computational time which is undesir-
able for such applications. Some other researchers [11,12] have used
the layerwise theory for modeling the sandwich structures. Indeed,
this theory assumes a displacement field in the form of zigzag along
the thickness of the structure, allowing a kinematic description of each
layer as a piecewise linear function. In addition, this theory is
applicable to both thin and thick structures. Nevertheless, when the
study is intended for thin structures, the first order shear deformation
theory (FSDT) presents a suitable choice for the modeling of sandwich
structures favored by its simple implementation in most finite
element codes.

However, these structures exhibit viscoelastic damping, which
combines viscous and elastic character. Hence, this dual character
leads to a complicated behavior which requires a correct modeling
approach. More recently, Golla, Hughes and Mc Tavish [13,14] have
proposed the so-called GHM model. This model provides an
effective method which includes viscoelastic damping through
the addition of auxiliary coordinates called dissipation coordinates
as a sum of elementary mini-oscillators.

Furthermore, the GHM model, combined with the finite ele-
ment method (FEM) [15], allows the introduction of viscoelastic
material properties through element mass, stiffness, and damping
matrices. The addition of internal mini-oscillators for each viscoe-
lastic finite element allows a general description of frequency-
dependent viscoelastic materials properties behavior. The main
advantage of this method consists in its efficient modeling of
viscoelastic material behavior; but its major drawback is the
largely finite element dimension system which requires a prohi-
bitive computing time. Consequently, a model reduction should be
applied to the augmented GHM model.

The present paper proposes an alternative of model reduction
such as dynamic [16,17], Guyan [18,19], modal and modal in
physical space (SEREP) [20–23] reduction methods for this pro-
blem. The first one is based on the elimination of unwanted

variables; it partitions the full degree-of-freedom (dofs) into
master and slave dofs and uses the modal properties of the slave
part of the structure when the master dofs are grounded. Hence,
the derived slave modes are operated to enrich the dynamic basis
leading to a drastic reduction method. The simplest yet very useful
model reduction method is the well-known Guyan reduction
method. It is a particular case of dynamic reduction method
according to which the inertia associated with the slave coordi-
nates is neglected; only master dofs are retained. Thereby, the
unwanted variables are removed, leading to a reduced model
which is a subset of the original system in a restricted range of
frequency. However this method is limited by its validity domain
[24,25]. Another reduction method is the frequently used modal
reduction method according to which the derived modes asso-
ciated with the undamped structure are incorporated in the GHM
damped model, yielding an exact transformation basis. This basis
restitutes correctly the undamped modes of the original system
leading to a drastic reduction. The modal reduction method can
expand the projection from generalized coordinates system to the
physical coordinates system, leading to another strategy of reduc-
tion called modal reduction in physical space method. This method
restitutes also the first modes of the undamped structure and
partitions the modal basis into master and slave dofs. This leads to
several cases which will be tested examining both the number of
retained modes and the number of master dofs.

On the other hand, the modeling of viscoelastic sandwich
structures has attracted many researchers, but only a few papers
have dealt with the GHM model [26,27]. However, these papers
remain limited mostly to frequency domain analysis with major
uses of the space state modal reduction method for model
reduction. In fact, Trindade et al. [28] and De Lima and Rade [29]
used the modal reduction in their studies frequently. It consists in
transforming the second-order equation of motion into an equiva-
lent first-order form (space-state model). Unfortunately, this
method leads generally to a space state model of dimension at
least the double of the total dimension of the GHM model (2 N)
and the quadruple dimension of the structural dofs which requires
a prohibitive time of calculations.

Therefore, the application of the proposed reduction methods,
which are often used with the undamped structures, combined
with the GHM model allows one to add the effects of viscoelastic
components to the sandwich structures without increasing the
order of the finite element models. Furthermore, these reduction
methods can be applied to sandwich structures described kine-
matically by the other mentioned theories.

In this paper, both the theory related to the implementation of
the FSDT theory combined with the GHM method and the theory
related to its reduction methods are presented. Numerical simula-
tions applied to beam, plate and non-linear assembled beams in
both frequency and time domains are also illustrated. These
examples will highlight the performance of reduction methods
and its practical interest in the dynamic analysis of viscoelastically
damped sandwich structures.

2. Three-layer viscoelastic finite element model

Multilayer structures are typically used for its light-weight,
high specific stiffness and strength values in many engineering
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