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a b s t r a c t

In this paper, a two-layer partial composite columns model is built based on Reddy's higher order beam
theory, and two novel displacement based finite elements for this and Timoshenko composite beams are
respectively formulated by means of the principle of minimum potential energy. Subsequently, the
buckling analyses of pinned–pinned and clamped–guided composite columns are performed using the
proposed finite elements, and the results are compared with those obtained by plane stress model,
Timoshenko and Newmark composite beams model respectively. The superior quality of Reddy
composite columns model over Timoshenko composite columns model and the correctness of the
proposed Timoshenko composite columns model are demonstrated by the numerical comparison.
Finally, the parametric study explores effects of parameters including stiffness of shear connectors, span-
to-depth ratios, Young's modulus ratios and sub-layer's depth on the buckling load. The discrepancies
between the performance of higher order and Timoshenko composite columns have also been
numerically investigated.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Composite layered systems are increasingly being employed in
various engineering applications due to their optimized material
configuration, high strength-to-weight and stiffness-to-weight
ratios, and so on. For instance, steel-concrete composite beams
are designed to make better use of the compressive strength of
reinforced concrete slab and the high tensile properties of the steel
joist. All the components of two-layer composite beams work
together through the connection of shear connectors, thus, the
shear connectors play a crucial role in the mechanical behavior of
composite beams. Accordingly, models of layered composites, due
to the rigidity of the shear connectors, can be grouped into at least
three categories: (1) full composite beams model [1], which
assumes rigid interfacial connection can be achieved; (2) partial
composite beams model [2,3], which takes the interfacial slip
into account and is still a popular and reasonable one, though the
plane cross-section assumption is still in use; (3) the higher order
shear deformable model [4,5], where higher order shear deforma-
tion of each sub-layer together with the partial interaction are
considered.

Mechanical models of two-layer composite beams have been
developing. Newmark et al. [6] as one of the pioneers studying the

two-layer partial composite beams, formulated the governing
differential equations for elastically connected steel-concrete
beams, based on the linear elastic Euler–Bernoulli beam theory.
Later on, their model was developed for the dynamic and non-
linear problems [7,8]. Ranzi and Zona [3,9] modeled the reinforced
concrete slab and steel joist with Euler–Bernoulli and Timoshenko
beam theory (TBT) respectively, and both time-dependent and
static analyses were carried out by the finite element method
(FEM). Moreover, Ref. [10–13] have proposed or applied mechan-
ical models considering the higher order shear deformation, of
which Reddy's [11] theory is one of the most popular ones. This
theory assumes that the axial displacement of beam varies as cubic
polynomial over the beam depth, as a result, the parabolic
distribution of shear flow over beam depth can be achieved. Thus,
there is no need to introduce the shear corrector factor used by
TBT, which is one of the appealing merits. That's because it is a
tough problem [14] to obtain Timoshenko's shear correction factor
for composite beams with partial interaction, as the factor is
attributed to each component cross-section's geometry as well
as the shear stress around the section [4]. Recently, Reddy's higher
order beam theory (RHBT) has been paid close attention to the
study of composite beams. Chakrabarti et al. [4,5,15], for example,
have proposed the finite elements for two-layer linear elastic
partial composite beams, subsequently analyzed both static and
dynamic responses of these composite beams by FEM.

A considerable amount of research has been conducted on the
stability of composite structures. However, most of the literatures

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/finel

Finite Elements in Analysis and Design

0168-874X/$ - see front matter & 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.finel.2014.01.004

n Corresponding author.
E-mail address: flamehe@shu.edu.cn (G. He).

Finite Elements in Analysis and Design 83 (2014) 49–57

www.sciencedirect.com/science/journal/0168874X
www.elsevier.com/locate/finel
http://dx.doi.org/10.1016/j.finel.2014.01.004
http://dx.doi.org/10.1016/j.finel.2014.01.004
http://dx.doi.org/10.1016/j.finel.2014.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2014.01.004&domain=pdf
mailto:flamehe@shu.edu.cn
http://dx.doi.org/10.1016/j.finel.2014.01.004


on buckling analyses of two-layer composite beams seem to be
based on the classic beams theory: Euler–Bernoulli beam theory
(EBT) and/or TBT. Even very recently, there are still plenty of
reports [16–22] on these. Although there are several reports
[4,5,15] aforementioned on RHBT composite beams, most of them
are confined to static or dynamic response analyses. To our
knowledge, there seems to be no analysis in the open literature
for buckling analysis of RHBT partial composite columns, which
motivates us to investigate the buckling characteristics of RHBT
composite columns and complement the aforementioned studies
of Refs. [4,5,15].

To overcome the drawbacks about shear correction factor, the
present paper performs the buckling analysis of RHBT composite
columns, and a novel displacement based locking free finite
element is formulated, by means of the principle of minimum
potential energy. This finite element (FE), where both Lagrange
and Hermite polynomials are employed to construct the shape
functions, is composed of three nodes, and each node contains
6 degrees of freedom (DOF), so as to avoid the introduction of
penalty coefficient [23], which may cause numerical problem [23].
The reliability and quality of the proposed finite elements are verified
through comparisons among the solutions of the present, plain stress
model, EBT model, simplified TBT model of Xu and Wu [2] and TBT
model of Grognec et al. [18]. In addition, FE formulation for partial
TBT composite beams is given to study the discrepancy between TBT
and RHBT. And full RHBT composite beams (whose shear connection
is rigid) are also presented aiming to make a thorough comparison to
examine the shear locking owing to the high stiffness of shear studs.
In the parametric study, parameters including slenderness ratios,
rigidity of shear connectors, Young's modulus ratios and sub-layer
depth ratios are investigated.

2. Axial displacement hypotheses

As is shown in Fig. 1, coordinate x denotes the location of
composite beams’ cross-section; subscript c and s denote the
component of layer c and s, respectively. The overall depth of
the composite beams is divided by the slip interface and the two
x axes at each sub-layer's centroid into four, which are h1, h2, h3,
and h4 from top to bottom. Symbols uc0 and us0 in Fig. 1 indicate
the axial displacement at cross-section's centroid of component
c and s respectively; θc and θs are the tangent slope of component
c and s at centroid of cross-section, respectively. The interfacial
slip is noted as ucs. According to Reddy's [11] third order axial
displacement assumption, the axial displacement mode can be
expressed as

uiðx; yiÞ ¼ ui0ðxÞ�θiðxÞ yiþαiðxÞ y2i þδiðxÞ y3i ; i¼ c; s: ð1Þ
where ui is the axial displacement of layer i; αiðxÞ and δiðxÞ are the
coefficients for higher order terms. The process of determining
αiðxÞ and δiðxÞ is given below.

Neglecting the uplift between the two components, i.e. the
transverse displacement of each sub-layer is the same. Thus, the
longitudinal interfacial slip ucs and transverse deflection of com-
posite beams w can be written as

ucsðxÞ ¼ ucðx; �h2Þ�usðx;h3Þ ð2Þ

wcðxÞ ¼wsðxÞ ¼wðxÞ ð3Þ
Shear strain and stress at cross-section can be obtained using

the physical and geometric equations from theory of elasticity
[24]. Thus, for part i, shear strain γi and shear stress τi can be
expressed as

γi ¼
∂ui

∂yi
þw0 ð4Þ

τi ¼ Gi γi ð5Þ
where the prime denotes the derivative with respect to the x, i.e.
ð�Þ0 ¼ dð�Þ=dx; Gi is the shear modulus of layer i.

Assuming that there is no shear stress acting on the top and
bottom surfaces of composite beams, in conjunction with the
theorem of conjugate shearing stress, yields two stress boundary
conditions

τcðh1Þ ¼ 0 ð6Þ

τsð�h4Þ ¼ 0 ð7Þ
The above two equations (6) and (7) are the same as Refs.

[4,5,15] used, and this paper is going to formulate the other two
constraints by the interface force continuity conditons between
the two layers, rather than by the way of Refs. [4,5,15] to introduce
two adjacent axial displacements at the interface as independent
variables.

We assume that the shear resistance of shear stud is smeared
uniformly on the interface, so that the interface force continuity
conditons may be formulated as

bc τcð�h2Þ ¼ kcs ucs ð8Þ

bs τsðh3Þ ¼ kcs ucs ð9Þ
where the linear constitutive law of shear connectors is employed,
i.e. F¼kcs ucs, in which kcs is rigidity of shear stud; F is the
resistance when interfacial slip reaches ucs; bc is the width of
cross-section c at the bottom; bs is the width of cross section s on
the top.

Moreover, the case of rigid shear connection can be formulated
by imposing ucs¼0, that is

ucð�h2Þ ¼ usðh3Þ ð10Þ

bc τcð�h2Þ ¼ bs τsðh3Þ ð11Þ
Higher order coefficients αi and δi can be obtained by Eqs. (6)–(9)
for partial RHBT composite beams, or by Eqs. (6), (7), (10) and (11)
for full RHBT composite beams. Consequently, we have the explicit
form of axial displacement field as

uc ¼m e ð12Þ

us ¼ n e ð13Þ
where e¼ uc0 θc us0 θs w0� �T; m and n are row vectors
whose expressions are given in Appendix A in detail.

3. Finite element formulations

3.1. Geometric and physical equations

By using the physical and geometric equations [24], in con-
junction with Eqs. (12) and (13), strain vectors can be expressed in
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Fig. 1. Axial displacement assumption of RHBT composite beams.
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