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a b s t r a c t

A generalized shell heat transfer element is formulated in isoparametric coordinates to simulate the 3D
thermal of non-uniformly heated shells with curved geometries. The element uses a combination of
finite element and control volume methods to discretize the domain of the element into 2D layers that
are coupled by a finite difference calculation. As demonstrated in previous work, the finite element-
control volume formulation allows the thermal response to be evaluated with minimal computational
expense and the temperature field is calculated in a manner that is compatible with distributed plasticity
elements for structural analysis. Although the formulation uses a mixture of finite element and finite
difference equations, the element equations are in a form that can readily be implemented in a
commercial finite element code. The nine-node quadratic element considered here is implemented in
Abaqus as a user-defined element. One-, two-, and three-dimensional verification cases are presented to
demonstrate the capabilities of the element. Comparisons between the shell heat transfer element and
traditional continuum heat transfer elements illustrate that the shell element converges rapidly and
results in significant savings in computational expense.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Macro finite elements (e.g., frame elements, shell elements, and
component models) are widely used in computational mechanics
to efficiently simulate structural response under various types of
loading conditions. Macro elements utilize simplifying assump-
tions about the underlying physics to reduce the number of
degrees of freedom in the model. For example, the Euler–Bernoulli
hypothesis that plane sections remain plane during bending
allows the behavior of a beam to be modeled by a line element
with translational and rotational degrees of freedom at the
element's ends. Due to the considerable reduction in degrees of
freedom (i.e., in comparison to continuum models), macro ele-
ments allow the response of complex, large-scale structural
systems to be studied in ways that would not be possible with
continuum models due to excessive computational expense.

Despite the widespread use of macro elements in structural
mechanics, limited research has sought to formulate macro finite
elements for other field problems. Semi-analytical methods
have been applied to efficiently calculate heat transfer in solids
but these techniques lack generality. Surana and others [1–5]

proposed a hierarchical p-version formulation to simulate the heat
transfer in laminated shells. In the p-version formulation, the
temperature field is interpolated from nodal values in the three
coordinate directions. Continuity conditions are imposed at the
interlaminar boundaries, allowing the temperature through the
thickness of the shell to be approximated by a piecewise function.
The lowest degree of polynomial that can be represented in the
p-version formulation is linear, which requires a minimum of two
nodes for each layer.

Jeffers [6] proposed an alternative formulation for a layered
plate heat transfer element that was based on a combination of
finite element and control volume approaches. As shown in Fig. 1,
the layer temperature varied in plane according to the 2D shape
functions, while the layers were treated as lumped masses in the
transverse direction. To satisfy the principle of energy conserva-
tion, heat transfer in the transverse direction was simulated via a
finite difference calculation. Verification exercises demonstrated
that the element exhibited excellent accuracy with minimal
computational expense, making the element an attractive alter-
native to 3D continuum elements.

The finite element-control volume approach for heat transfer
analysis [6–8] has an added benefit of providing compatibility
between the heat transfer model and distributed plasticity ele-
ments that are used in structural mechanics. The compatibility
arises from the fact that there is a one-to-one mapping between
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the temperature degrees of freedom in the heat transfer element
and the integration points in the structural element (i.e., for the
calculation of thermal stresses/strains and the application of
temperature-dependent constitutive relationships). The seamless
transfer of data from the thermal analysis to the structural analysis
prevents excessive calculations that would otherwise be needed to
interpolate and/or discard temperature data.

In the present paper, the formulation by Jeffers [6] is extended to
allow for shells of curved geometries, as illustrated in Fig. 2. The
finite element-control volume approach is maintained in the
present formulation. However, the element geometry is expressed
in natural coordinates ξ, η, and ζ rather than in Cartesian coordi-
nates x, y, and z. Thus, a geometric transformation is introduced in
the formulation to transform the element from ξηζ coordinates to
xyz coordinates. The generalized formulation is presented in Section
2, and a verification study is performed in Section 3.

2. Element formulation

The generalized shell heat transfer element (shown in Fig. 2) is
discretized into n layers. It is assumed that the thickness of the
shell is relatively small in comparison to the other dimensions
(e.g., that its mechanical behavior can be described by shell
bending theory). Because the thickness is small in comparison to
the other dimensions, the temperature gradients produced by
non-uniform heating on the surface of the shell are more pro-
nounced over the thickness of the element than in other directions.

Therefore, an optimal solution to the 3D heat transfer equations
requires a large number of degrees of freedom over the thickness and
fewer degrees of freedom to describe the in-plane behavior.

In the present formulation, the mixed finite element-control
volume method proposed in [6–8] is used. The temperatures for
each layer in the ξ–η plane are interpolated from the nodal
temperature using 2D shape functions, while the layer tempera-
tures in the ζ-direction are modeled as lumped masses. Governing
equations in global xyz coordinates are transformed to the natural
ξηζ coordinates based on a geometric relationship between the
global and natural coordinates.

The degrees of freedom for the element consist of the layer
temperatures at each node. For an element with n layers, the
element has n temperature degrees of freedom at each node. If the
element has m nodes, the element has a total of nm temperature
degrees of freedom. Temperatures in the ξ–η plane may be
interpolated as linear or quadratic. The present formulation con-
siders a base geometry that is quadrilateral. However, the for-
mulation can be extended to triangular elements.

2.1. Element geometry

The element's geometry is defined in terms of the nodal
coordinates (xj, yj, zj) at the mid-surface of the shell, the thickness
tj, and the thickness-direction vector nj for each node j. Shown
in Fig. 3, the thickness-direction vector nj is dependent on the
direction cosines lj, mj, and nj of the line that is normal to the mid-
surface, i.e., [9]

nj ¼ tj
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If points 1 and 2 along the normal vector have coordinates (x1j, y1j,
z1j) and (x2j, y2j, z2j), respectively, the direction cosines are
calculated by
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Note that the midsurface coordinates are the average of the
coordinates of points 1 and 2 at the top and bottom surfaces of
the plate, i.e.,

xj ¼ ðx1j�x2jÞ=2

yj ¼ ðy1j�y2jÞ=2

zj ¼ ðz1j�z2jÞ=2 ð3Þ

Because the element geometry is described in this manner, the
shape functions Nj are dependent on ξ and η only (i.e., the shape
functions are independent of ζ). Thus, the coordinates of an arbitrary
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Fig. 1. Plate heat transfer element [6]. (a) Layers and nodes for the 9-node element,
and (b) schematic of the temperature field in layer i.

Fig. 2. Generalized shell heat transfer element: (a) in global coordinates, and (b) in natural coordinates.
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