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An inverse finite element method (IFEM) has been developed for estimation of the blank size and
prediction of the strain distribution in sheet metal forming. In the inverse method the nodal coordinates
in the final shape are known and their corresponding positions on the initial blank should be
determined. The developed method deals with logarithmic large strains of membrane triangular
elements, virtual work principle and a new approach for friction modeling. This method leads to a
system of nonlinear equations which is highly sensitive to the initial guess. In order to avoid the
converging problems, especially in the quasi-vertical walls, an appropriate initial guess is introduced.
The introduced initial guess guarantees the convergence; furthermore the number of iterations in the
nonlinear numerical solution is decreased and the solution speed is significantly increased. Three
different problems are analyzed with the developed method and the results show good agreement to
commercially available finite element software and experimental results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Sheet metal forming is a complicated process that depends on
numerous parameters such as die geometry, blank shape, drawing
ratio and blank holder force. An important factor for having a
successful process without defects is the initial blank shape. The
traditional method to simulate the sheet metal forming is the
forward incremental finite element method [1-3]. In the forward
method, computations start with the blank geometry which is
unknown at the initial design stage. Therefore, trial and error is
the nature of the forward method which is very time consuming.
Due to this fact, a method is needed to predict the initial blank
shape directly. So many attempts have been carried out in order to
obtain the initial blank directly.

Karima [4] made use of the slip-line method to design the
initial blank shape. Vogel and Lee [5] and Chen and Sowerby [6]
used the characteristic of plane stress, while Blount and Stevens
[7] used geometric mapping to design the initial blank shape.
These methods provide good guidance to design the initial blank
shape, but they neglect the height of the deformed parts, have
geometric restrictions, and do not consider the deformation
behavior of the materials. On the other hand, there have been
several attempts to design the blank shape and estimate the
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distribution of the strain in a deformed part with deformation theory
of plasticity. Majlessi and Lee [8-11] showed that using this theory is
reasonable for rapid simulation in the first stages of design. They
extended the theory of Levy et al. [11] and applied it to axisymmetric
one step and multi-stage problems, obtaining good results. However,
this method cannot be applied without boundary conditions imple-
mentation like friction and blank holder force. Therefore, the crash
form process cannot be analyzed by this approach. Guo and Batoz
[12-14] derived a formulation for field problems as an inverse
method to obtain the initial blank shape and the thickness distribu-
tion in a deformed part. Due to the nonlinearities that come from
considering large deformation and material properties, this method
is very sensitive to initial guess and needs an efficient initial guess.
Based on the work by Karima et al. [15], Assempour et al. [16-18]
developed a linear inverse finite element method known as unfold-
ing technique. Their formulation is based on the principle of potential
energy minimization and linear strain—displacement relation. Thus,
their formulation leads to a system of linear equations which can be
solved very quickly. This method is very efficient in obtaining the
initial blank; however, due to the nature of linear formulation, the
strain values are less accurate compared with nonlinear formulation.

In the present study, an inverse finite element formulation has
been developed which deals with the principle of virtual work,
deformation theory of plasticity and logarithmic large strains of
membrane triangular elements. This method leads to a system of
nonlinear equations which is very sensitive to the initial guess
and may diverge in numerical solution. In order to avoid the
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convergence problems, especially in the quasi-vertical walls, the
linear unfolding method is used as an appropriate initial guess.
Besides, a new approach for friction modeling is introduced which
considers a non-uniform distribution of the friction force on the
nodes located under the blank holder zone. Numerical simulations
have been conducted and results have been compared with
Abaqus Explicit and experimental results to verify its feasibility.

2. Modeling and formulations of the developed inverse
algorithm

In the inverse approach only two states are considered:

(1) The initial flat blank obtained from the initial guess with a
known thickness.

(2) The final work piece with a known tridimensional mid-surface
discretized with flat triangular membrane elements.

2.1. Basic formulations

The geometry of final shape is discretized with linear triangular
membrane elements. Positions of elements in the flat plane are
obtained by an appropriate initial guess. Fig. 1 shows the sche-
matic elements of the initial and final shapes.

By considering only the initial and final states of elements and
calculating left Cauchy-Green deformation tensor [B], principal

stretches are obtained as below:
~2=n)"[B]" () (i=1,2) (1

where {n;} are eigenvectors of [B] ™' [19]. Principal stretches which
are also eigenvalues of [B], can be calculated as follows:
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A3 is also obtained from 1; and 1, by assuming incompressibility.
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Fig. 1. Kinematics of linear triangular membrane elements between initial and
final shapes.

where Li=IIHjI?> and h, h;y are the components of h; (see Fig. 1) in
the element local coordinates of final configuration.

Logarithmic strains in element local coordinates can be
obtained from Eq. (2) as follows:

£x In 21 cos2 0+ In Ay sin? 0
ey Y=< Insin? 6+ Iniycos? @ (4)
Exy (In 11 — In 23)sin @ cos 6

where 0 is the angle between the x axis of the local coordinate
system and the principal stretch 1, [19]:

-2
0= tan ! </1133”> (5)
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Under conditions of plane stress (¢,=0x,=0,,=0) and planar
isotropic material, Hill's function gives

1+42r 2

T+r 7 ®)

floy) = a,z(x—i-o—}z,y i +raxxayy +2—
where r is the Lankford value.
Based on deformation theory of plasticity and implementing

flow rule on Hill's function, the constitutive equation is defined as

Oxx -~ AB A 0 Exx
oy b = §§ A AC 0 €y (7)
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The effective strain corresponding to Eq. (6) can be expressed as

F= \/(2/3)/\(3 -+ 2exxeyy +Ce2, +2De2)) )

The effective stress & is also obtained from & by the Holloman
power law.

2.2. Solution procedure

The principle of virtual work is applied to the final work piece:
Z Wmt Z WEXI‘ - (10)

where e is element numbers and,

Wiy = / ("o (11)

ext—/<U*>{f}dV (12)

where, (u*) and (¢*) are the virtual displacements and their
corresponding virtual membrane strains, v, is the element volume,
{o} are the Cauchy stresses, and {f} are the external forces such as
tool actions in element local coordinates.

Element internal work W§,, can be written as below:

mt = <U*> mt (13)

With <U’:>_<UJ*, V]*,W*), j=1,2,3. U* V¥ W?* are the virtual
displacements in the global coordinate system XYZ. Since the
vertical displacement of each node is known, W} = 0. {F{,,} are the

element internal forces vector and are given by
Fie} =[T1"[B]" {a}Ah (14)

where [B] is the strain operator in the local coordinate system of
each element. [T] is the transformation matrix between global and
local coordinate systems. A is the element area and h is the
thickness of the element. h is obtained from thickness stretch
which is modified at each iteration.
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