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a b s t r a c t

To obtain the probability density functions and the cumulative distribution functions of static responses
of stochastic structures, a hybrid stochastic method named as the transformed perturbation stochastic
finite element method (TPSFEM) is proposed. In TPSFEM, the static responses of stochastic structures are
approximated as the linear functions of random variables by using the first order perturbation technique.
According to the approximated linear relationships between static responses and random variables, the
probability density functions of static responses are obtained by the change-of-variable technique. The
cumulative distribution functions of static responses are calculated by the numerical integration method.
The numerical examples on a thin plate, a six-bar truss structure, a Mindlin plate and a shell structure
verify the effectiveness and accuracy of the proposed method. Hence, the proposed method can be
considered as an alternative engineering method for the static response analysis of stochastic structures.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Due to the effects of model inaccuracies, physical imperfections
and system complexities, uncertainties widely exist in engineering
structures including bridges, buildings, offshore structures, vehi-
cles, ships, aerospaces and so on. In most cases, the uncertainties
existing in engineering structures can be treated as random
variables whose probability density functions are defined unam-
biguously based on the statistical analysis of sample data. The
uncertain structures with random variables can be described as
stochastic problems. Probability approaches can be considered as
the most feasible techniques for stochastic problems. In engineer-
ing practices, the use of the random theory in the finite element
method (FEM) has initiated the development of the stochastic
finite element method (SFEM) [1–3]. SFEM has received consider-
able attention in the last several decades. The ability of SFEM to
treat with the non-deterministic properties is of great value for a
design engineer realizing the reliability assessment and the
robustness analysis of uncertain structures.

Monte Carlo method is the most versatile probabilistic method
for stochastic problems. According to the probabilistic conver-
gence, the accuracy of Monte Carlo method strongly depends on
the number of samples generated by a random number generator.

With the increase in the number of samples, the accuracy of
Monte Carlo method is improved gradually. However, the
improvement in the accuracy of Monte Carlo method is always
at the cost of computational burden. Thus, Monte Carlo method
cannot be directly applied to large-scale engineering problems.
In order to reduce the computational cost of Monte Carlo method
without deteriorating its accuracy, numerous variants (the impor-
tance sampling method [4], the subset simulation method [5], the
line sampling method [6] and the other extended methods [7])
have been developed in the last decade. Each variant has its merits
and demerits [8]. Monte Carlo method and its variants are random
sampling method. Recently, some non-random sampling method,
such as Metropolis sampling method [9,10] and interval sampling
method [11,12], have been developed. The main advantage of
these non-random sampling methods is that the total number of
samples can be reduced greatly. However, the computational
accuracy of these non-random sampling methods is depended
on the sampling rule which is formulated on the basis of sample
model. If the sampling rule is inappropriate, results yielded by the
non-random sampling methods may be deviated from the real
ones seriously. Therefore, up to now, Monte Carlo method is still
considered as the most robust probabilistic method and is usually
used as a reference method to investigate the accuracy of other
probability approaches [13–15].

Spectral stochastic method, in which the random input para-
meters are modeled by Karhunen–Loève formulation and the
random response quantities are approximated by the polynomial
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chaos expansion, is an alternative approach for stochastic pro-
blems [16]. The application of the spectral stochastic method
within the finite element framework has initiated the develop-
ment of the spectral stochastic finite element method (SSFEM)
[17–21]. The main advantage of SSFEM is that the complete
probability distributions of random variables can be provided.
According to the researches on the convergence and accuracy of
SSFEM [22,23], we can obtain that the results estimated by SSFEM
converge to the “exact” solutions when the number of terms in the
polynomial chaos expansion increases towards infinity. Unfortu-
nately, with the increase in the number of terms, the computational
burden of SSFEM increases sharply. This is why the application of
SSFEM has been limited to the stochastic systems with a small
number of degrees of freedom in the past time. Furthermore, the
application range of SSFEM is strongly depended on the approaches
adopted to calculate the coefficients of expansion.

Perturbation stochastic finite element method (PSFEM) is
another important branch of stochastic methods [24–33]. In this
approach, the random system matrices and the random loading
vectors are expanded by the Taylor series. As the improvement in
precise obtained by using the higher order approximations is
rather small when compared to the disproportional increase of
the computational complexity, the first order approximation is the
most feasible strategy [34]. Based on the first order perturbation
analysis, the responses of stochastic structures are transformed
into the linear functions of random variables. By linearizing the
relationships between the responses of stochastic structures and
random variables, the computational complexity of PSFEM is
simplified and the mathematical formulae of PSFEM can be easily
implemented in the standard finite element codes. In most cases,
the results obtained by PSFEM are expressed as the expectations
and standard deviations of response vectors [25,27–33]. The
expectations and standard deviations are the important mathe-
matical characteristics of random variables. In the probability
theory, if the types of the probability distributions of random
variables are not defined unambiguously, the probability density
functions of random variables cannot be determined even though
the precise values of expectations and standard deviations are
obtained. Consequently, the classical PSFEM cannot be applicable
to determine the probability density functions of random
responses of stochastic structures, unless the random responses
can be approximated as Gaussian random fields [25,26]. As a
matter of fact, the uncertain parameters in many cases cannot be
modeled as Gaussian variables. If some uncertain parameters are
modeled as non-Gaussian variables, the random responses are
usually strongly non-Gaussian. Therefore, how to effectively apply
the classical PSFEM to the stochastic structures whose responses
cannot be approximated as Gaussian random fields is still a
challenge needing to be dealt with.

In probability theory, the change-of-variable technique is used
to derive the probability density functions of dependent variables
according to the probability density functions of independent
variables and the mapping relationships between dependent
variables and independent variables [35]. In application of the
change-of-variable technique, the mapping relationships between
dependent variables and independent variables should be inver-
tible. Unfortunately, in the practical engineering, the responses of
stochastic structures are not likely to be the invertible functions of
random variables. Even if the responses of stochastic structures are
the invertible functions of some random variables, the mapping
relationships between responses and random variables may be too
complicated to obtain the corresponding inverse functions.

As is mentioned above, the mapping relationships between
responses and random variables of stochastic structures can be
linearized by the classical PSFEM based on the first order pertur-
bation analysis. However, the classical PSFEM cannot be used to

calculate the probability density functions of responses unless the
responses can be approximated as Gaussian random fields. The
change-of-variable technique can be used to calculate the prob-
ability density functions of dependent variables, if the probability
density functions of independent variables are defined ambigu-
ously and the mapping relationships between dependent variables
and independent variables are invertible. Thus, a hybrid stochastic
method which integrates the classical PSFEM and the change-of-
variable technique within a unified framework may be developed
to calculate the probability density functions of responses of
stochastic structures.

In this paper, a unified framework integrating the classical
PSFEM and the change-of-variable technique together is con-
structed. Based on the constructed unified framework, a hybrid
stochastic method named as TPSFEM is proposed for the static
response analysis of stochastic structures. In the proposed method,
the responses of stochastic structures are simplified to the linear
functions of random variables based on the first order perturbation
analysis. The invertible function of a linear function can be easily
obtained by some simple mathematical operations. Thus, the
change-of-variable technique can be effectively applied to calcu-
late the probability density functions of responses of stochastic
structures. TPSFEM for the static response analysis of stochastic
structures requires the following steps: (1) expanding the random
stiffness matrices and the random loading vectors by using the
first order Taylor series; (2) calculating the static responses of
stochastic structures based on the first order perturbation analy-
sis; (3) determining the coefficient vectors of the corresponding
random variables; and (4) approximating the probability density
functions of the static responses of stochastic structure based on
the change-of-variable technique and calculating the cumulative
distribution functions of the static responses of stochastic struc-
tures based on the numerical integration method.

The organization of this paper is listed as follows. The math-
ematical backgrounds about the numerical methods based on the
change-of-variable technique to calculate the probability densities
of the function with a random variable and the function with two
random variables are discussed in Section 2. TPSFEM for the static
response analysis of stochastic structures is deduced in Section 3.
In Section 4, four numerical examples including a thin plate, a six-
bar truss structure, a Mindlin plate and a shell structure are
provided to verify the effectiveness and accuracy of the proposed
method. In Section 5, some conclusions are given.

2. Mathematical backgrounds

2.1. Probability density of a function with a random variable

Suppose g(x) is a function of the random variable x, defined as

y¼ gðxÞ ð1Þ
where the probability density function of x can be expressed as
fx(x).

By using the change-of-variable technique, the probability
density function of y can be determined in the term of fx(x)

f yðyÞ ¼
1

jdy=dxj f xðxÞ ¼
1

jdy=dxj f xðg
�1ðyÞÞ ð2Þ

where fy(y) is the probability density function of y; x¼g�1(y) is the
inverse function of y¼g(x). Unfortunately, it may be difficult or
even impossible to obtain the inverse function x¼g�1(y), as not all
functions have the corresponding inverse functions. If the inverse
function x¼g�1(y) cannot be obtained, Eq. (2) has little meaning.
To overcome this disadvantage, a numerical method based on the
Taylor expansion will be proposed in this section.
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