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a b s t r a c t

Laminate composites are widely used in automotive, aerospace, and increasingly in consumer industries,
due to their reduced weight and superior structural properties. However, structural analysis of complex
laminate structures remains challenging. 2D finite element methods based on plate/shell theories may
be accurate and efficient, but they generally do not apply to the whole structure and require
identification and preprocessing of the regions where the underlying assumptions hold. Fully automated
structural analysis using solid 3D elements with sufficiently high order basis functions is possible in
principle, but is rarely practiced due to the significant increase in the cost of computational integration
over a large number of laminate plies.

We propose a procedure to replace the original laminate by much simpler new virtual material
models. These virtual material models, under the usual assumptions made in lamination theory, have the
same constitutive relationship as the corresponding 2D plate model of the original laminate, but require
only a small fraction of computational integration costs in 3D FEA. We describe implementation of 3D
FEA using these material models in a meshfree system using second order B-spline basis functions.
Finally, we demonstrate their validity by showing agreement between computed and known results for
standard problems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Laminate composites are now used widely in variety of industries,
including aerospace, automobile, medical and sports [1–3]. Lami-
nates are lightweight and stiff with customizable material properties,
resulting in structures superior to those made of homogeneous
materials [2–4]. High stiffness-to-weight ratio is achieved using fiber
reinforced plies. These plies, when fused together under high
temperature and pressure, form complex monolithic laminate parts.
The fiber reinforcements, laid using techniques ranging from manual
to fully automatic, are generally parallel and unidirectional and,
therefore, result in plies which are anisotropic in nature. Material
properties are customized by varying fiber angle within each ply,
controlling the number of plies, and adding additional materials
between plies such as cores and fillers. The presence of numerous
plies, however, leads to complex geometry and material distribution
in laminate structures, and, therefore, structural analysis of laminates
by treating each ply layer individually is prohibitively expensive. The

common practice is to assume that the layers are permanently fused
together and ignore any fluctuation in stress–strain fields at the
interfaces of layers [3–6]. These assumptions allow to approximate
laminate's global behavior as that of a plate or a shell. Interlaminar
stresses and strains may be significant in boundary regions and
regions of discontinuities [7] where full three-dimensional and/or
layered methods should be used, but the plate/shell assumptions
give sufficiently accurate stress and strain estimates for regions away
from those regions [8]. In this paper, we will show that the same
plate/shell assumptions, when applicable, may be used within a
general 3D finite element analysis to dramatically speed up the
analysis procedure.

Structural analysis of laminates can be carried out using
different finite element methods, and some of them are illustrated
for a typical laminate part in Fig. 1. During finite element analysis
(FEA), stiffness matrix Ke for each element must be computed,
which in general form is given as [9]

Ke ¼
Z
Ωe

BT �Q � B dΩ; ð1Þ

where B is the strain–displacement matrix, Q is the material
constitutive relation matrix, and Ωe is the element's domain over
which integration is done. Since there are numerous plies, mesh-
ing each ply independently requires a large number of elements
and is, therefore, prohibitively expensive. A much smaller number
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of elements is needed if layered element method [10–12] is used
(Fig. 1b and c), wherein multiple plies can cross through an
element. Such finite element methods (also called 3D FEA since
integration domain Ωe is 3D) may be further classified into
conforming and non-conforming (or meshfree), depending on
whether the finite element mesh conforms to the geometry of
the laminate. Three dimensional elements may exhibit locking and
ill-conditioning of stiffness matrix when used for laminates that
are thin in the ply layup direction [9,13]. These problems can be
alleviated or eliminated by using higher order hierarchical1 basis
functions [14,15].

All 3D FEA methods are computationally expensive, as the above
integration has to be carried over large number of plies (tens or even
hundreds). Integration is performed using quadrature rules that
depend on the geometry of the element as well as the degree of
the integrand, and amounts to sampling the integrand at a number of
quadrature points [9]. To get an idea of the high cost of integration
for laminates, we consider the layered element used in reference [10]
to analyze a laminate made of 100 plies. The element used is an
eight-node brick element with tri-linear basis functions, which, for a
homogeneous material, is fully integrated using 2 integration points
in each direction, or 8 integration points in total [10]. However, in a
laminate, 8 integration points are needed for each ply, which results
in a 100 fold increase for our 100-ply laminate. Since integration cost
represents a significant portion of the overall solution procedure,
analysis of composite laminates using layered elements is an
expensive proposition.

Plate or shell assumptions reduce the computation cost and
increase accuracy of FEA for laminates owing to their thin walled
nature. These assumptions may lead to different lamination theories,
where the material matrices Q of all the plies are replaced by the
so-called ABD matrices [4,16]. The structure and the integration
domain Ωe effectively reduces to a surface (Fig. 1a), which is why
this method is also called 2D FEA. However, 2D FEA is not valid in
regions near boundaries and discontinuities (Fig. 1), which have
significant 3D stresses and, therefore, plate/shell assumptions are
invalid. In this sense, 2D FEA methods are not general, because such
regions are common in laminate structures.

1.2. Contributions and outline

Based on the above discussion, the choice between 2D and 3D
FEA amounts to a trade-off between generality and computational
efficiency. We seek to develop an approach to analysis of

composite laminate structures that is as general as 3D FEA and
as efficient as 2D FEA when dimensional reduction makes sense.

Specifically, we propose a method to reduce the excessive cost of
integration for layered elements by taking advantage of plate/shell
nature of laminates, whenever such assumptions are reasonable. To
this end, we have devised a procedure to obtain material models
which are simpler but are equivalent to the original laminate, under
the assumption made in lamination theories. We refer to these new
material models as ABD-equivalent material models, as they result
in the same ABD matrices as the original laminate and, therefore,
can replace the original laminate during integration if plate/shell
assumptions apply. We demonstrate the effectiveness of two such
material models—a 3-ply and a graded material model—in a non-
conforming FEA system using layered solid elements. We validate
the two ABD-equivalent material models by using them to analyze
several benchmark problems, and compare obtained results from
known results. The fully implemented non-conforming FEA system
uses layered solid elements with second-degree B-spline basis
functions that are hierarchical in nature.

A brief outline of the paper is as follows. In Section 2, we survey
the related work. Section 3 develops the concept of ABD-equivalent
material models and proposes two specific examples of such
models. Implementation of the proposed approach in combination
with a non-conforming finite element method is described in
Section 4. Its effectiveness is demonstrated using a number of
benchmark problems in Section 5, followed by conclusions and
future work in Section 6.

2. Related work

The finite element methods for simulating global behavior of
laminate structures [16–18] may be broadly classified as a 2D or a
3D FEA. For the purposes of this paper, we only consider those
methods which ignore inter-ply phenomena, but we note that the
inter-layer stress–strain can be partially predicted from global
deformation [4,19].

2.1. Two-dimensional FEA

Laminates usually behave as plates or shells, and are analyzed
using 2D FEA. Depending on the strain field assumed in the
laminate's thickness direction, different lamination theories exist
[5,17,16], and can be classified as one of the following: Classical
Lamination Plate Theory (CLPT), First Order Shear Deformation
Theory (FSDT), or Higher Order Shear Deformation Theories (HSDTs).
CLPT assumes that laminates undergo only stretching and pure
bending (Fig. 2C): in-plane strains vary linearly in the thickness
direction, and out-of-plane strains are absent. On the other hand,

Fig. 1. Figure shows a structure made of 3 laminates analyzed using different finite element methods. (a) Plate/shell element. (b) Element of 3D conforming mesh.
(c) Element of a 3D non-conforming mesh. (d) Element of a non-conforming mesh with curved laminate inside.

1 A basis function is called hierarchical when a higher order basis function
contains all the lower order basis functions; for example, B-splines are hierarchical
basis functions.
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