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a b s t r a c t

This paper aims to extend the evolutionary methods of topology optimization to free vibration problems
of acoustic–structure systems. The interacting fluid and structure fields are governed by the acoustic
wave equation and the linear elasticity, respectively. Both domains are solved with the finite element
method. The coupling conditions are the equilibrium and kinematic compatibility at the acoustic–
structure interfaces. The proposed bi-directional evolutionary structural optimization (BESO) method
seeks to maximize the first natural frequencies of the acoustic-structural model by switching elements
into solid, fluid or void condition. It allows the acoustic–structure boundaries to be modeled and
modified straightforwardly, addressing design-dependent loads on the topology optimization problem
with simple finite element formulations. The proposed methodology extension is justified by various
possible applications to free vibration of acoustic–structure systems such as tanks/reservoirs, acoustic-
structural devices, passengers compartments in automobiles and aircrafts and pipelines. Numerical
results show that the evolutionary methods can be applied to this kind of multiphysics problem
effectively and efficiently.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Structural Topology Optimization method for continuum struc-
tures [1,2] has gained in popularity and now is used daily as a design
tool in industry and academy. The basic idea is to find an optimal
distribution of material in a structural design domain considering an
objective function and constraints. Commercial topology optimiza-
tion tools have been developed based on special Finite Element
Method (FEM) solvers or have been added in standard commercial
packages, many of them concerning stiffness or natural frequencies
maximization.

Although the optimization procedures have reached a satisfac-
tory level of maturity, many topics are still open to research. An
important group consists of multiphysics problems. Commercial
FEM packages often contain solvers for multiphysics problems,
however they do not enable optimization.

Through the last 10 years, the methods of topology optimization
have been under a considerable scientific effort to be extended to
different physical phenomenon problems. One may cite aerolastic
structures [3], acoustics design [4–6], thermo-elastic stresses [7],

fluid flows [8] and fluid–structure interaction [9–11], acoustic–
structure responses [12–14], multiscale analysis [15,16] and others.

The presented work aims to contribute to the design of multi-
physics systems, more specifically in acoustic–structure interac-
tion design problems. Yoon et al. [12] proposed a mixed element
formulation to model acoustic–structure responses. The method
approximated both acoustic and solid domains in an overlapped
mixed model, allowing the solid isotropic material with penaliza-
tion (SIMP) method to be applied. Vicente et al. [14] developed a
new sensitivity analysis for the bi-directional evolutionary struc-
tural optimization (BESO) method for frequency responses mini-
mization of acoustic–structure systems. The authors considered
the minimization of pressures and displacements under harmonic
loads. Different from [12,14], herein no loads are applied and free
vibration of coupled acoustic–structure systems is considered for
eigenvalues maximization. The fluid and solid fields considered
here are modeled with the classic finite element formulation from
Zienkiewicz and Bettess [17], currently and widely used in com-
mercial codes. In the coupled eigenproblem both acoustic and
structural fields strongly influence the vibration modes of the
system in all directions since no harmonic excitation is applied.
This type of modal analysis has been explored in optimization for
purely structural analysis [18–21], but not for free vibration of
acoustic–structure problems using the classic formulation.
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In order to allow the switch between solid, fluid and void
elements, the BESO method is applied. The discrete update scheme
of the evolutionary methods allows the use of separate and
different governing equations during the optimization problems,
such as proposed by Picelli et al. [22]. This overcomes a well
known challenge of the classic density based methods in dealing
with moving multiphysics loads and interfaces [23,24]. Thus, in
the context of multiphysics optimization, the BESO method pre-
sents great potential applications specially considering classic
formulations, which can be advantageous for the combination of
commercial FEM packages and the optimization codes.

The technique so-called Evolutionary Structural Optimization
(ESO) was first introduced in the 90s with Xie and Steven [25]. The
ESO method was initially proposed as a gradual removal of
inefficient material from the design domain until the remaining
structure converges to the optimum topology. Material elimination
is done after a sensitivity analysis. A later development of this
method was called Bi-directional ESO (BESO), inwhich elements are
also added in void positions near to the elements with the highest
sensitivity numbers [26]. In the evolutionary optimization methods,
the elemental sensitivity number is a local index and represents the
sensitivity of the objective function when the element is added or
removed. Papers considering the BESO method have presented
convergent and mesh independent solutions [27], natural frequen-
cies constraints [20] and others. Recently, Sigmund and Maute [28]
and Deaton and Grandhi [29] have cited the evolutionary methods
as one class of the main structural topology optimization methods.

The paper is organized as follows: Section 2 presents the
governing equations and the finite element model for the acous-
tic–structure coupled system. In Section 3, the topology optimiza-
tion problem for free vibration is formulated and the sensitivity
analysis is carried out. Details of the method are also described.
Section 4 shows the numerical results achieved with the proposed
methodology. Finally, conclusions are drawn in Section 5.

2. Acoustic–structure interaction: governing equations and
finite element model

Herein, the analyzed systems are limited to free vibration of
flexible structures in contact with acoustic fluids. For this system,
the structure can be described by the differential equation of
motion for a continuum body assuming small deformations and
the fluid by the acoustic wave equation [17,30,31]. The governing
equations for the fluid and structural domains as well as the
coupling boundary conditions are defined as follows.

2.1. Acoustic domain

In this paper, the fluid is considered inviscid, irrotational and
only under small translation conditions. The governing equation
for the pressure field in a homogeneous acoustic fluid medium can

be described by the acoustic wave equation

1
c2f

∂2pf
∂t2

�∇2pf ¼ 0 in Ωf ; ð1Þ

where pf is the acoustic pressure and cf is the speed of sound in
the acoustic domain Ωf . In this paper, the following boundary
conditions are considered:

pf ¼ p0 on Sp; ð2Þ

∇pf � nf ¼ 0 on Sf ; ð3Þ
representing the pressure Dirichlet boundary condition, Eq. (2),
applied on the portion of the boundary Sp, where p0 is the
constrained pressure, and the hard wall natural boundary condi-
tion, Eq. (3), applied on Sf , as shown in Fig. 1.

2.2. Structural domain

We consider the equilibrium of a linearly elastic structure in
the domain Ωs. The solid domain is governed by the equilibrium
equation

∇ � σs�ρs
∂2us

∂t2
¼ 0 in Ωs; ð4Þ

where ∇ � σs is the divergence of the Cauchy stress tensor, ρs is the
structural mass density and us is the structural displacement
vector field. In this work the Dirichlet boundary conditions are
applied as follows (see Fig. 1):

us ¼ 0 on Su; ð5Þ

2.3. The coupled acoustic-structural system

At the interface Sfs between the structural and fluid domains,
the fluid and the structure move together in the normal direction
of the boundary. The normal vector n¼ nf ¼ �ns (see Fig. 1) can
be used in order to guarantee the equilibrium condition between
fluid pressures and structural tractions on Sfs:

σsns ¼ pfnf on Sfs; ð6Þ
With relations derived from the governing equations and the
previous coupling conditions, the interface forces may be
obtained. Using an approximation based on the finite element
method (FEM), the force acting on the structure provided by the
fluid pressure is [17,30,31]

ffs ¼
Z
Sfs
NT

snNf dSfs pf ð7Þ

and the excitation acting on the fluid domain can be expressed in
terms of the structural acceleration

fsf ¼ �ρf

Z
Sfs
NT

f nNs dSfs €us ð8Þ

where pf is the vector of nodal pressure in the fluid elements, ρf is
the mass density of the fluid, us is the vector of structural
displacements in the structural elements and Ns and Nf contain
the finite element shape functions for structural and fluid ele-
ments, respectively.

The introduction of a spatial coupling matrix, Lfs, where

Lfs ¼
Z
Sfs
NT

snNf dSfs ð9Þ

allows the coupling forces to be written as

ffs ¼ Lfspf ð10Þ

s

f

f 0p p

su 0

su 0
fS

fS
pS

fsS
uS

uS

n

sn

fn
f f 0p n

f f 0p n

=

Ω

∇ ⋅=

Ω
∇ ⋅ =

=

=

Fig. 1. The coupled acoustic–structure system: the acoustic fluid domain Ωf and
the structural domain Ωs coupled by integrals over the acoustic–structure interface
Sfs.
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