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a b s t r a c t

An elastoplastic implicit integration algorithm applicable to both plane stress and three-dimensional

stress states is developed for a general class of combined nonlinear kinematic–isotropic hardening

models. The algorithm is first built for three-dimensional stress states in a general manner using the

return mapping procedure and the Newton–Raphson method. The plane stress constraint is then

incorporated into the Newton–Raphson iteration loop derived for three-dimensional stress states. The

resulting algorithm has a mode patch that makes the algorithm applicable to both plane stress and

three-dimensional stress states. The algorithm is specified by assuming an advanced evolution model of

multiple back stresses, and is verified by performing numerical tests using plane stress, shell, and brick

elements. The numerical tests are finite element analyses of homogeneously deformed plates and a

cyclically loaded single-hole plate. It is demonstrated that the developed algorithm provides the

quadratic convergence of iterations for implicit stress integration in plane stress, shell, and brick

elements. It is also demonstrated that the algorithm is stable even in large incremental steps.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

A well-known model in the study of cyclic plasticity is the
nonlinear kinematic hardening model proposed by Armstrong
and Frederick [1]. This model has been highly rated because of its
simple structure, consisting of strain hardening and dynamic
recovery, and its superior ability to represent well the shapes of
stress–strain hysteresis loops under cyclic loading [2]. Implemen-
tation of the model in finite element methods has been investi-
gated in several studies [3–8]. The Armstrong and Frederick
model has thus been available as a constitutive model of cyclic
plasticity in commercial software of finite element analysis.

The Armstrong and Frederick model, however, usually over-
predicts ratcheting and cyclic stress relaxation, which are funda-
mental phenomena in cyclic plasticity. In the last two decades,
many studies have shown that this drawback can be more or less
overcome by elaborating the dynamic recovery of back stress, as
reviewed in Refs. [9–11]. For example, Ohno and Wang [12,13]
considered step- and power-function nonlinearities in the
dynamic recovery of back stress to improve the simulation of

ratcheting and cyclic stress relaxation.1 Jiang and Sehitoglu [16]
further studied the power-function nonlinearity to simulate
ratcheting. Investigation of these nonlinearities has led to suc-
cessful simulations of ratcheting experiments [17–24] and easy
identification of the material parameters of nonlinear kinematic
hardening [18,25]. The consideration of such nonlinearities has
also triggered computational studies that have implemented a
general class of nonlinear kinematic hardening models in finite
element methods [26–30], although only three-dimensional
stress states have been dealt with in these studies.

The implicit integration of stress and the algorithmic expres-
sion of tangent stiffness are necessary to implement a constitutive
model in the implicit method of elastoplastic finite element
analysis [31–33]. For plane stress states, these need to satisfy
the condition that the out-of-plane components of stress are zero.
Because of this condition, which is called the plane stress
constraint, particular schemes have been developed for plane
stress elastoplastic finite element analysis [33]. An elegant
scheme is that based on plane stress-projected constitutive
models, which include only in-plane stress and strain compo-
nents to satisfy the plane stress constraint [32,33]. This scheme
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1 Chaboche [14] introduced a threshold in the dynamic recovery of back stress

to improve the simulation of racheting. Henshall and Miller [15] considered

power-function nonlinearity in the dynamic recovery of short range back stress.
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was originally proposed for the von Mises isotropic hardening
model by Simo and Taylor [34] and Jetteur [35]. For complex
constitutive models, however, it may not be easy or feasible to
derive plane stress-projected models, and in such cases, it is
recommended to use other schemes [33].

In this study, considering a general class of combined non-
linear kinematic–isotropic hardening models of plasticity, we
develop an elastoplastic implicit integration algorithm that
is applicable to both plane stress and three-dimensional
stress states. To this end, the algorithm is first built for three-
dimensional states in a general manner on the basis of the return
mapping procedure and the Newton–Raphson method. The plane
stress constraint is then incorporated into the Newton–Raphson
iteration loop derived for three-dimensional stress states. The
resulting algorithm has a mode patch that makes the algorithm
applicable to both plane stress and three-dimensional stress
states. To verify the developed algorithm, assuming an advanced
evolution model of multiple back stresses, we perform numerical
tests using plane stress, shell, and brick elements. The numerical
tests are finite element analyses of homogeneously deformed
plates and a cyclically loaded single-hole plate.

Throughout this paper, I and O indicate the fourth-rank unit
and null tensors, while 1 and 0 signify the second-rank unit and
null tensors; ID denotes the deviatoric operator defined as
ID
¼ I� 1=3

� �
1� 1. Moreover, a superposed dot indicates differ-

entiation with respect to time, dots stand for inner products
between tensors (e.g., r:e¼ sijeij and D:e¼Dijklekl), and : :
denotes the Euclidean norm of second-rank tensors (e.g.,
:r:¼ r:rð Þ

1=2).

2. Constitutive relations

In this study, we consider elastoplastic materials that are rate
independent and initially isotropic. We presume that the strain e
is small and is additively decomposed into the elastic part ee

obeying isotropic Hooke’s law and the plastic part ep governed by
the associated flow rule based on a yield surface F ¼ 0, which
translates and expands. For simplicity, we consider isothermal
conditions. We then have

e¼ eeþep, ð1Þ

r¼De : ee, ð2Þ

_ep
¼ _l

@F

@r
, ð3Þ

F ¼ 3=2
� �

:s�a:2
�Y2, ð4Þ

where r denotes the stress tensor, De the isotropic elastic
stiffness tensor, _l the scalar to be determined using the consis-
tency condition _F ¼ 0, s the deviatoric part of r, a the center of the
yield surface in the deviatoric space, and Y the radius of the yield
surface.

We assume that the yield surface F ¼ 0 expands as a function
of accumulated plastic strain p:

Y ¼ YðpÞ, ð5Þ

where

_p ¼
ffiffiffiffiffiffiffiffiffi
2=3

p
: _ep: ð6Þ

The center a can be regarded as the deviatoric part of
back stress a. It is then appropriate to decompose a into several
parts [2]:

a¼
XM
i ¼ 1

aðiÞ, ð7Þ

where M denotes the number of multiple back stresses. We
further assume that each aðiÞ evolves as

_aðiÞ ¼ fðiÞðaðiÞ,p, _ep
Þ, ð8Þ

where fðiÞ is a material function that satisfies

fðiÞðaðiÞ,p,0Þ ¼ 0 ð9Þ

The multiple back stresses based on Eqs. (7) and (8) can be
interpreted in terms of the nested multiple loading surfaces in
deviatoric stress space [36].

3. Backward Euler discretization

Let us consider the loading interval between two states n and
nþ1, in which the constitutive variables have their values
indicated by subscripts n and nþ1. Let us use a prefix D to
signify the changes in constitutive variables in the loading
interval. The backward Euler method then allows Eqs. (1)–(8) to
be discretized as

rnþ1 ¼De : enþ1�ep
nþ1

� �
, ð10Þ

enþ1 ¼ enþDenþ1, ð11Þ

ep
nþ1 ¼ ep

nþDep
nþ1, ð12Þ

Dep
nþ1

Dpnþ1

¼
3

2

ynþ1

Ynþ1
, ð13Þ

Dpnþ1 ¼
ffiffiffiffiffiffiffiffiffi
2=3

p
:Dep

nþ1:, ð14Þ

ynþ1 ¼ snþ1�anþ1, ð15Þ

anþ1 ¼
XM
i ¼ 1

aðiÞnþ1, ð16Þ

DaðiÞnþ1 ¼ fðiÞ aðiÞnþ1,pnþ1,Dep
nþ1

� �
, ð17Þ

where Ynþ1 ¼ Y pnþ1

� �
and pnþ1 ¼ pnþDpnþ1. It is noted that

Eqs. (10)–(17) apply only to elastoplastic loading intervals in
which the following yield condition is satisfied:

Fnþ1 ¼ 3=2
� �

:ynþ1:
2
�Y2

nþ1 ¼ 0 ð18Þ

It is also noted that Eq. (13) is based on the coaxiality of Dep
nþ1

and ynþ1, a consequence of Eqs. (3)–(5), as well as on Eqs. (14)
and (18).

4. Implicit stress integration

This section describes an implicit stress integration algorithm
valid for the constitutive relations given in Section 2. The algo-
rithm is first built in a general manner in three-dimensional
states. The plane stress constraint is then incorporated in the
algorithm so that the algorithm is also applicable to plane stress
states.

4.1. Three-dimensional stress state

The problem considered here is stated as follows. Given Denþ1

in addition to all constitutive variables for state n, find rnþ1 that
satisfies the discretized constitutive relations (10)–(18). We use
the return mapping procedure, which consists of an elastic
predictor and a plastic corrector [31–33].
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