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a b s t r a c t

Dimensionally reduced cylindrical shell models using complementary energy-based variational

formulations of a priori non-symmetric stresses are compared. One of them is based on the three-

field dual-mixed Hellinger–Reissner variational principle, the fundamental variables of which are the

stress tensor, the rotation and displacement vectors. The other one is derived from the two-field dual-

mixed Fraeijs de Veubeke variational principle in terms of the self-equilibrated stress field and

rotations. The most characteristic properties of the shell models are that the kinematical hypotheses

used in the classical shell theories are not applied and the unmodified three-dimensional constitutive

equations are employed. Our investigations are restricted to the axisymmetric case. The developed

dual-mixed hp finite element models with C0 continuous tractions and with discontinuous rotations

and displacements are presented for bending–shearing (including tension–compression) problems. The

computational performance of the constructed shell elements is compared through two representative

model problems. It is numerically proven that no significant differences can be experienced between

the two well-performing shell elements in the convergence rates.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The widely used standard displacement finite element technique
has some significant disadvantages. Firstly, the conventional finite
element models provide worse convergence rates and lower accu-
racy in the evaluation of the stress field, which is often more
important in many engineering applications than the knowledge
of displacements. Secondly, the primal-mixed and displacement-
based methods can lead to especially poor numerical results, when
the plate and shell problems become bending dominated for small
thicknesses. This phenomenon is known as numerical lockings
including the shear- and membrane locking [1–5]. Thirdly, for more
general models, arising in viscoelasticity and plasticity, the direct
approximation of the stress field may be needed [6]. Furthermore,
stability problems can be expected at nearly incompressible mate-
rial, when the Poisson ratio is close to the incompressibility limit of
0.5. This is the reason why the material stiffness tensor becomes
singular, i.e., the inverse of the stiffness matrix does not exist. The
displacements can be inaccurately computed and even worse values
can be obtained for the sum of the normal stresses. This is the well-
known incompressibility locking effect [7,8].

There are several attempts to circumvent locking effects in the
standard low-order displacement-based finite element models.
These h-type shell elements are usually based on the various
modifications of the principle of virtual work [9–13].

One of the most effective strategies for avoiding locking
problems in the displacement-based finite element formulation is
to use high-order (p-version) methods and the hierarchical plate and
shell elements [8,14–17]. These p elements are verified to be
locking-free in the energy norm and displacement computations
for general shells, but the numerical results obtained for stresses are
not exempt from locking, see for example [18,19]. It is important to
note here that the h-version of the higher-order finite element
schemes does not always converge asymptotically [20].

Another alternative way is to apply dual-mixed variational
principles in the framework of the linear elasticity. These meth-
ods are suitable for the direct approximation of the stress field.
Complementary energy-based dual-mixed variational formula-
tion and finite element models have several advantages, as
pointed out by [21,22]. They can provide better convergence rates
and higher accuracy for the stresses than strain energy-based
primal-mixed formulations and the conventional displacement-
based formulations.

The classical dual variational principle is based on global
maximizing the total complementary energy functional in terms
of the stress field, satisfying the strain compatibility equation and
the displacement boundary condition in a weak sense. The traction
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boundary condition, as well as the translational and rotational
equilibrium equation are enforced in the strong sense using the
second-order stress function tensor [23]. A dimensionally reduced
cylindrical shell model based on this approach can be found in [24].
The related finite element scheme requires, however, C1 contin-
uous approximation of the second-order stress functions. This
requirement, which is primarily caused by the a priori satisfaction
of the symmetry condition for the stress tensor, makes it rather
difficult and complicated to establish numerically efficient and
well manageable elements for general shells.

One of the possibilities to avoid the difficulties mentioned in
connection with development of numerically efficient stress
based models is to incorporate the symmetry condition for the
stress tensor into the total complementary energy functional
using the rotations as Lagrangian multipliers. Applying this two-
field dual-mixed variational principle, the translational equili-
brium equations have to be satisfied a priori with the first-order
stress function tensor. Plane elasticity models, as well as dimen-
sionally reduced plate and shell models using the corresponding
dual-mixed variational principle of Fraeijs de Veubeke [25] have
been derived in [26–33]. The advantage of this principle is that
the approximations of the first-order stress functions require only
C0 continuity between two elements.

The other alternative for the derivation of dimensionally
reduced stress-based shell models is to ensure the satisfaction
of only the translational equations in a weak sense, using the
displacements as Lagrangian multipliers. Thus the two-field dual-
mixed variational principle of Hellinger–Reissner [34–36] with a

priori symmetric stresses can be obtained, where the displace-
ment vector and the stress tensor are approximated as indepen-
dent unknowns [37–45]. Although this approach usually yields
good results for stresses, the development of stable and efficient
finite element models has proven to be much more difficult than
that with not a priori symmetric ones.

The lack of simple stable and efficient dual-mixed shell
elements for the two-field Hellinger–Reissner functional has led
to the construction of a modified Hellinger–Reissner variational
principle in which the symmetry of the stresses is enforced
weakly using the rotations as Lagrangian multipliers [46–52],
retaining the basic stress and displacement variables. The resulting
formulation has three independent fields: the stress tensor, the
displacement vector and the rotation vector. Methods of this type
are discussed in [6,53–57].

An outline of this paper is as follows. Dimensionally reduced
cylindrical shell models are presented applying the two-field
dual-mixed variational principle of Fraeijs de Veubeke and the
three-field dual-mixed variational principle of Hellinger–Reissner.
The functionals of the applied variational principles are described
in Section 2. The geometric description of the cylindrical shell is
given in Section 3.

A consistent dimensional reduction procedure is presented in
Section 4. The approximation of the variables with respect to the
thickness coordinate is given within Section 4.1. Then the number
of the independent stress components is reduced by a priori

satisfaction of the prescribed surface tractions on the inner and
outer surfaces of the shell, assuming axisymmetrical loads in
Section 4.2. A further reduction of the independent stress com-
ponents is achieved by the elimination of certain rotations
(Section 4.3). Then the self-equilibrated stress space of the Fraeijs
de Veubeke variational principle is presented for cylindrical shells
(Section 4.4).

In Sections 5.1 and 5.2, the first variation of the dual-mixed
three-field Hellinger–Reissner and the two-field dual-mixed
Fraeijs de Veubeke functionals are derived for thin cylindrical
shells, applying the inverse stress–strain relations of linearly
elastic, homogeneous and isotropic materials.

After choosing the applied polynomial spaces for hp-type
approximations (Section 5.3), the computational performance of
the finite element shell models are tested through two examples
in Section 6. The convergence rates of the relative errors in energy
norm, as well as in maximum norm of the directly approximated
stresses are compared. The convergence curves for the relative
errors measured in maximum norm of the displacements,
approximated directly in the Hellinger–Reissner formulation, are
also presented. The developed shell elements give very good
numerical results for both h-extension and p-approximation
independently of the thickness of the shell.

2. Dual-mixed functionals

The objective of this paper is to present similarities and
differences of dimensionally reduced cylindrical shell models
[33,57] based on dual-mixed variational principles using non-
symmetric stresses. Throughout this paper, the usual summation
convention is used and the range of the Latin indices is 1,2,3 and
that of the Greek indices is 1 and 2. In the linear theory of
elasticity their functionals can be derived from the total comple-
mentary energy functional

KðspqÞ ¼�

Z
V

UðspqÞ dVþ

Z
Su

~upspqnq dS, ð1Þ

where V denotes the volume of the body bounded by the surface
S¼ Sp [ Su, ðSp \ Su ¼ |Þ, and ~up is the displacement vector
prescribed on the surface part Su. The outward unit normal vector
to the surface S is nq. The complementary strain energy density
function U can be expressed with the stress tensor spq as

UðspqÞ ¼ 1
2s

pqepqðsrsÞ: ð2Þ

For linear elastic materials the symmetric strain tensor epq can be
obtained from the inverse stress–strain relations epq ¼ C�1

pqrssrs,
where the fourth-order tensor C�1

pqrs with symmetry properties
C�1

pqrs ¼ C�1
pqsr ¼ C�1

rspq is the elastic compliance tensor. The subsidiary
conditions to functional (1) are the translational equilibrium
equations

spq
: :;qþbp

¼ 0 in V , ð3Þ

the rotational equilibrium equations

Epqrspq ¼ 0 in V , ð4Þ

and the stress boundary conditions

spqnq ¼ pp on Sp, ð5Þ

where the subscript q preceded by a semicolon denotes the
covariant derivative, bp stand for the body forces, Epqr is the
covariant permutation tensor, as well as pp are the prescribed
surface tractions on Sp.

To employ a priori non-symmetric stress field, the rotation
equilibrium equation (4) is added to the functional (1) with
Lagrangian multiplier technique. Thus we can obtain Fraeijs de
Veubeke functional [30]

F ðspq,jrÞ ¼ �

Z
V

UðspqÞ dVþ

Z
V
Epqrspqjr dVþ

Z
Su

~upspqnq dS, ð6Þ

where the infinitesimal rotation vector jr plays the role of the
Lagrangian multiplier. The application of this principle requires
the a priori satisfaction of the translational equilibrium equation
(3) and the stress boundary conditions (5). A self-equilibrated
stress field, i.e., a stress field that fulfills (3), can be obtained by
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