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a b s t r a c t

Triaxial compression of elastoplastic particles was studied with numerical and analytical methods in
order to develop a mechanistic model for their interactions at high relative densities. The introduction of
an equivalent particle radius that accounted for the elastic volumetric deformation enabled an almost
perfect reduction of the results obtained for elastoplastic particles to those obtained for rigid, perfectly
plastic ones. This, in turn, made possible a simplified yet mechanistic analytical analysis of the particle
response in terms of the contact area, pressure and force. The developed model exhibited a good
agreement with the numerical results, especially for intermediate and large strains, and hence laid the
foundations for the development of mechanistic contact models suitable for simulations of granular
materials at high relative densities with the Discrete Element Method (DEM).

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The discrete element method (DEM), developed by Cundall and
Strack [1], has established itself as the de facto standard technique
for micromechanical simulations of granular systems. However,
the DEM cannot in its current form reliably address issues related
to compaction of granular materials at high relative densities,
because of its inherent assumption of independent contacts and
the lack of appropriate contact models. It has been recognised for
quite some time that contacts can no longer be considered
independent for relative densities exceeding about 0.85–0.90 for
nonporous monodisperse spherical particles [2,3] and it has
recently been claimed that effects of contact impingement cannot
be neglected at relative densities as low as 0.7 if a particle-scale
analysis is aimed at [4]. Hence, local models such as the ones
proposed by Storåkers et al. [5], Thornton and Ning [6], Vu-Quoc
and Zhang [7] and Brake [8] are not adequate in this range.

More elaborate methods can be used to circumvent these
issues, such as the combined finite/discrete element method
(FEM/DEM) [9–11], also referred to as the multiparticle finite
element method (MPFEM) [12,13,4] or the meshed discrete ele-
ment method (MDEM) [14]. The FEM/DEM is able to provide
highly valuable results for small systems, but is unpractical for
large-scale simulations due to its prohibitive computational cost.
Hence, the DEM represents the most viable compromise between
efficiency and accuracy, but new contact models are needed.

Significant progress towards the development of contact mod-
els valid at high relative densities has been made by Harthong
et al. [4,14] who have presented a semi-empirical model for the
behaviour of plastic particles. In this approach, the standard
overlap-based contact force was augmented by a density-
dependent singular term that accounted for plastic incompressi-
bility, using a local relative density inferred from a Voronoi
tessellation [15,16]. In an attempt to account for the constraint
imposed by plastic incompressibility in an average sense, keeping
the notion of independent contacts, a maximal plastic overlap was
introduced in the truncated Hertzian contact model [6,17]. The
maximal plastic overlap was inferred from a regular particle
packing and represented the junction where the ability of plastic
particle deformation was exhausted [17]. A more fundamental
model, albeit restricted to contact between elastic spheres, has
been proposed by Gonzalez and Cuitino [18]. Invoking the princi-
ple of superposition, as appropriate for linear elasticity, the overall
particle deformation was expressed as a sum of the deformations
resulting from each individual contact. Comparison with FEM/DEM
results indicated that a superior representation of the particle
responses under compression was obtained when contact depen-
dence was properly accounted for. As a first step towards a
mechanistic model for the interaction between plastically deform-
ing particles under confined conditions, a geometrical analysis of
the deformed particle shape was made in terms of a truncated
sphere whose radius increased to accommodate the displaced
material [19], building on the work by Fischmeister and Arzt [2]
and Montes et al. [20].

Although the truncated sphere model [19] exhibited a satisfac-
tory agreement with numerical results for different triaxial
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loadings, it cannot describe the response at large volumetric
strains, for two reasons. First, contact impingement invalidates
the area determination, since the contacts will cease to be circular
at large strains. Second, spatial confinement produces a mean
contact pressures that exceeds the hardness, a process referred to
as ‘geometrical hardening' by Sundström and Fischmeister [21]. In
order to address these issues in an as simple geometric context as
possible, this work focuses on hydrostatic triaxial compression and
develops a simplified mechanistic model for the particle response.
In the light of previous work in the field, the adopted hydrostatic
triaxial loading is expected to provide insights that can be
generalised to more general loading conditions, because the
crossover between a stage dominated by plastic deformation and
a stage dominated by elastic deformation appears to be largely
controlled by the degree of confinement, as quantified by a
Voronoi tessellation [2,4,14]. Such extensions to more general
loading conditions are discussed.

2. Numerical analysis

As in [19], the finite element method (FEM) was used to study
the mechanical response of single particles under triaxial loadings.
The onset of plastic flow was governed by the classical von Mises
yield function, with yield stress σy and no hardening. The elastic
response was derived from a free-energy function of the com-
pressible neo-Hookean type, containing two material constants
that can be calculated from the Young's modulus E and Poisson's
ratio ν. Simulations were performed for initially spherical particles
with radius Rp0 ¼ 0:5 mm. The Young's modulus E was kept fixed
at 10 GPa, and four different values of Poisson's ratio were used
(ν¼ 0:3;0:4;0:45 and 0.49), corresponding to bulk moduli
κ ¼ E=½3ð1�2νÞ� of 8.33, 16.67, 33.33 and 166.7 GPa. Likewise,
two different yield stresses were assumed (100 and 200 MPa),
corresponding to E=σy ratios of 100 and 50. The particles were
loaded along the x, y and z directions, using constant loading rates.
A sliding boundary condition was used between the particle and
the confining walls, i.e., the friction coefficient was put equal
to zero.

Due to the reflection symmetries in the x, y and z planes, one
octant of the particle was discretised by using about 41 500
hexahedral finite elements. Specifically, the total displacement
version of the physically stabilised hexahedral element proposed
by Puso [22] was adopted. This element eliminates shear and
volumetric locking and is also relatively accurate for coarse
meshes. Moreover, as shown by Reese et al. [23,24], elements that
exhibit small mesh-distortion sensitivity may be devised by
evaluating the stabilisation stiffness on the equivalent parallele-
piped rather than on the element itself, which in effect means that
the hourglass vectors hi are substituted for the stabilization
vectors γi (refer to [22] for the explicit definitions). Since numer-
ical tests confirmed that the substitution of hi for γi in the Puso
element indeed significantly reduced its mesh-distortion sensitiv-
ity [10], this slightly modified element was used in the simula-
tions. For ease of implementation, an explicit solution scheme was
employed, with sufficient damping so that quasi-equilibrium was
maintained.

3. Theory

During confined conditions in general and hydrostatic com-
pression in particular, elastic deformation is expected to be
primarily manifested as a volume reduction of the particle. To
decouple the elastic and plastic deformation, it proves convenient
to introduce an equivalent particle radius Req such that the current

particle volume Vp can be expressed as

Vp ¼
4πR3

eq

3
: ð1Þ

The usefulness of this definition stems from the fact that the
equivalent particle radius Req can be used instead of the initial
particle radius Rp0 in a geometric analysis of the particle shape.

To estimate the magnitude of the elastic volume reduction, the
average pressure in the particle is expressed in two different ways.
First, the average stress σ can be calculated as a sum over the n
contacts [25],

σ ¼ 1
Vp

Xn
i ¼ 1

Fi � ri; ð2Þ

where Fi � ri denotes the tensor product between the force Fi on
contact i and the radius vector ri pointing from the particle centre
to the contact point. For hydrostatic triaxial compression with
n¼6, ri ¼ rr̂ i and Fi ¼ �Fr̂ i, where r̂ i is an appropriate unit vector,
the average pressure P becomes

P ¼ �1
3
trσ ¼ 2rF

Vp
¼ 3rF

2π
; ð3Þ

where the last equality follows from the definition (1) once the
scaled quantities r ¼ r=Req and F ¼ F=R2

eq have been introduced.
Second, using the definition of the bulk modulus κ, the average
pressure can be expressed as

P ¼ κ 1� Vp

Vp0

� �
¼ κ 1�R3

eq

R3
p0

 !
; ð4Þ

where Vp0 ¼ 4πR3
p0=3 is the initial particle volume and where

the second equality follows from the definition (1). Combining
Eqs. (3) and (4), one obtains

Req ¼ Rp0 1�3rF
2πκ

 !1=3

: ð5Þ

Assuming that the particle shape for small to intermediate
strains can be described as a truncated sphere of radius R (Fig. 1a),
the particle volume can be determined as the difference between
the volume of the sphere ð4πR3=3Þ and the volume of 6 spherical
caps [each of volume ðπ=3Þð2R3�3R2rþr3Þ], i.e.,

Vp ¼ 8π
3

�R3þ9
4
R2r�3

4
r3

� �
: ð6Þ

In the light of the definition (1) this becomes

R
3�9r

4
R
2þ3r

4

3

þ1
2
¼ 0 ð7Þ

where R ¼ R=Req. The solution to this cubic equation can be
expressed as

R ¼ A 2 cos
arccos ðB=A3�1Þþπ

3

" #
þ1

( )
ð8Þ

where A¼ 3r=4 and B¼ 3r3=8þ1=4. In the absence of non-
idealities (see below), contact impingement would occur when
r ¼ r1 ¼ R=

ffiffiffi
2

p
(Fig. 1b) and Eq. 7 implies that

r1 ¼
1

ð15=2�4
ffiffiffi
2

p
Þ1=3

� 0:816: ð9Þ

Once contact impingement occurs, the free particle surface will
be described as sphere with radius

ffiffiffi
2

p
ðr�sÞ, where s is half the

length of the straight segment of the contact boundary (Fig. 1c).
Hence the particle volume can be expressed as the difference
between the volume of a cube with side-length 2r ð8r3Þ and the
volume of 8 corners [each of volume cðr�sÞ3, where c is an as yet
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