Accepted Manuscript

Title: A single MCR-ALS model for drug analysis in different formulations: Application on diazepam commercial

preparations

Author: Michele De Luca Giuseppina Ioele Claudia Spatari

Gaetano Ragno

PII: S0731-7085(16)30957-8

DOI: http://dx.doi.org/doi:10.1016/j.jpba.2016.10.022

Reference: PBA 10906

To appear in: Journal of Pharmaceutical and Biomedical Analysis

Received date: 2-8-2016 Revised date: 24-10-2016 Accepted date: 26-10-2016

Please cite this article as: Michele De Luca, Giuseppina Ioele, Claudia Spatari, Gaetano Ragno, A single MCR-ALS model for drug analysis in different formulations: Application on diazepam commercial preparations, Journal of Pharmaceutical and Biomedical Analysis http://dx.doi.org/10.1016/j.jpba.2016.10.022

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A SINGLE MCR-ALS MODEL FOR DRUG ANALYSIS IN DIFFERENT FORMULATIONS: APPLICATION ON DIAZEPAM COMMERCIAL PREPARATIONS

Michele De Luca*, Giuseppina Ioele, Claudia Spatari, Gaetano Ragno Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy

* Address correspondence to this author at the Dept. Pharmacy, Health and Nutrition Sciences, University of Calabria, 87036 Rende, Italy; Tel./Fax: +390984493201; Email: michele.deluca@unical.it

Highlights

- MCR-ALS modelling was used to quantify diazepam in 30 commercial liquid formulations.
- MCR calibration was run on the UV-vis data of the commercial DZP samples.
- This model was optimized by appropriate selection of the most useful wavelengths.
- The predictive performance of the MCR model was compared with PLSR.

ABSTRACT

A multivariate curve resolution - alternating least squares (MCR-ALS) analysis was used to quantify diazepam (DZP) in thirty commercial liquid formulations. MCR calibration was run on the UV spectrophotometric data of the commercial DZP samples over the range 200-400 nm, allowing the resolution of the drug signal and then the excipients contained in all the formulations. A single model MCR for the determination of the drug in all samples was then built through the adoption of the correlation constraint. This model was optimized by an appropriate selection of the most useful wavelength ranges and then validated on external samples. DZP concentrations in the pharmaceutical formulations were measured by HPLC-DAD analysis. The performance of the MCR model was compared with that from application of classical partial least squares regression (PLSR). The results, in terms of error of prediction, were very satisfactory, reaching a relative error below of 1.66% against 2.56%, respectively.

Keywords: Diazepam; Multivariate curve resolution; Partial least squares regression; UV spectrophotometry; Pharmaceutical analysis; HPLC.

Download English Version:

https://daneshyari.com/en/article/5138384

Download Persian Version:

https://daneshyari.com/article/5138384

<u>Daneshyari.com</u>