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a b s t r a c t

This paper introduces a successive perturbation-based method for multiscale stochastic analysis of
heterogeneous materials such as composite materials. Microscopic random variations sometimes have a
significant influence on homogenized material properties and microscopic stress fields. Therefore,
multiscale stochastic problems should be analyzed to evaluate the reliability of composite structures.
Further, in order to assess the result of numerical analysis of a composite structure, this type of
uncertainty propagation should be taken into account. For this purpose, the successive perturbation
based approach is proposed.

As a numerical example, the stochastic homogenization and multiscale stochastic stress analysis
problem of composite materials are solved considering microscopic random variations. From the
numerical results, the proposed approach gives a more accurate estimation than the conventional
perturbation approach. Also, our proposed method works well for both smooth nonlinear response
functions and non-smooth response functions.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Estimating the influence of microscopic random variations of
heterogeneous materials such as composite materials on a homo-
genized material property is called as the stochastic homogenization
problem. Kaminski et al. [1] and Sakata et al. [2] reported stochastic
homogenization analysis with the Monte-Carlo simulation. For single-
scale stochastic problems, the stochastic finite element method [3]
and the spectral stochastic finite element method (SSFEM) [4] have
been proposed, and they have been extended to the multiscale
stochastic analysis for heterogeneous materials such as composites
in recent. For example, the perturbation-based approach for elastic
[5–7] and thermal problems [8–10] and SSFEM based multiscale
stochastic analysis [11] have been reported. This research topic is
noticed recently, and other approaches have been also reported for
stochastic homogenization analysis [12–14].

The stochastic homogenization problem is important for reliability
evaluation of composite structures, especially in cases where a priori
random variation or a posteriori effects such as aging and mechanical
and chemical influences in a manufacturing process should be taken
into account. In addition, from the viewpoint of assessment using
computer simulation-based analysis, this type of uncertainty

propagation through the different scales should be considered in the
validation and verification of the numerical simulation.

The randomness of a microscopic field in a heterogeneous
material, a key feature of this paper, influences the structural
response to be evaluated. Because a heterogeneous advanced mat-
erial has a complex microstructure, multiscale analysis methods
that analyze the homogenized material property and multiscale
stress field are usually employed. Similarly, influence of the mic-
roscopic uncertainty on the property of homogenized materials
and the macroscopic and microscopic stress field should be ana-
lyzed with a multiscale analysis framework.

In general cases, the Monte-Carlo method gives good esti-
mation of the probabilistic response with less assumption, but a
computational cost will be expensive. Thus, a more accurate
and efficient stochastic homogenization methodology is
needed. Kaminski [15] and Sakata et al. [7,10] reported numer-
ical results by employing a higher order perturbation-
based method; however, it has been reported that higher order
perturbation does not always improve estimation accuracy.
Approximation-based stochastic homogenization methodologies
have been proposed to solve this problem by Sakata et al. [16] and
Kaminski [17]. These approximate stochastic homogenization meth-
ods effectively improve accuracy and computational efficiency for
the analysis, but problems still exist. For example, determination of
the approximation parameters and applicability of those methods to
problems having many random variations need to be explored. Thus,
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the series expansion-based approach needs to be improved. Some
related topics can be found in literature [18].

In this paper, the perturbation-based technique is improved for more
accurate multiscale stochastic analysis. A higher order perturbation does
not always improve estimation accuracy, and it is difficult to determine
an appropriate approximation order for acceptable estimation without
referring to an exact solution of the probabilistic property obtained from
experimental results or Monte-Carlo simulation; therefore, a lower order
approximation is preferable in some cases. Also, a general perturbation
method with using derivatives at single expansion point or a smooth
function approximation will not be applicable to a non-smooth stochas-
tic response such as the maximum microscopic stress against a
microscopic random variation. Consequently, a successive perturbation-
based multiscale analysis method is proposed in this paper.

In the following sections, at first, an outline of the stochastic
homogenization problem and the multiscale stochastic stress analysis
methodology is introduced in Section 2. Next, details of the proposed
method are given in Section 3. The proposed method is applied to the
stochastic homogenization problem on thermoelastic properties and
multiscale stress analysis of composite materials, and its validity and
effectiveness and the numerical results obtained are discussed in
Sections 4, 5, and 6. Finally, conclusions are given in Section 7.

2. Multiscale stochastic analysis in elastic problems

Multiscale analysis is important in the design of composite struc-
tures because composite materials possess complex microstructures
that exert complex influences on macroscopic properties and the
microscopic stress fields of composite materials. In general, a structure
is divided into two or more scales: one is a macroscopic structure, and
the other is a microscopic structure comprising two or more compo-
nent materials. The equivalent material property that reflects the
features of the microscopic structure, such as the material properties
of the geometry of the component materials, is used in mechanical
analysis at the macroscale, and therefore multiscale stress analysis
involves the procedures of homogenization, macroscopic stress analy-
sis, and localization. An outline of deterministic multiscale elastic
analysis is illustrated in Fig. 1(a).

In addition, the influence of microscopic randomness on
macroscopic response and microscopic stress fields has been
analyzed. This type of analysis is an important issue in solid
mechanics, especially in the case of heterogeneous materials. In
such cases, propagation of uncertainty or randomness through the
different scales must be investigated with stochastic homogeniza-
tion or multiscale stochastic stress analysis, which investigates the
stochastic response caused from a random variation in a different
scale, especially in microscale. An outline of multiscale stochastic
analysis is illustrated in Fig. 1(b). In this paper, the multiscale
stochastic problem is analyzed.

In general, there are two types ofmicroscopic randomvariations; one
is the uniformly distributed random variation, which is observed in
material properties of component materials in different production lots,
the other is non-uniform random variation, which can be observed in a
random media. Both cases should be considered in reliability evaluation
of composite structures, and the former case is considered in this paper.

3. Analysis method

3.1. Perturbation-based stochastic homogenization method

From a general formulation of homogenization theory [19], a
homogenized macroscopic elastic tensor EH can be computed as

EH ¼ 1
Yj j
Z
Y
E I�∂χ

∂y

� �
dY ; ð1Þ

where E is an elastic tensor of the microstructure, Yj j is the
volume of a unit cell, and I is a unit tensor. χ is a characteristic
displacement, which can be obtained as a solution of the following
characteristic equation:Z
Y

∂
∂y

E
∂χ
∂y

dY ¼
Z
Y

∂
∂y

EdY ð2Þ

If a microscopic quantity such as an elastic property of a
component material includes a random variation, the homoge-
nized elastic tensor can be expressed as a stochastic response for
the microscopic random variable as follows:

EHn ¼ 1
Yj j
Z
Y
En I�∂χ n

∂y

� �
dY ð3Þ

where the superscript “n” indicates a random variable. In addition,
the characteristic equation considering the randomness can be
rewritten asZ
Y

∂
∂y

En∂χ n

∂y
dY ¼

Z
Y

∂
∂y

EndY ð4Þ

The probabilistic characteristics as the expectation or variance of
the homogenized elastic tensor can be expressed as

Exp EHn
h i

¼
Z 1

�1
EHf EH

� �
dEH ð5Þ

Var EHn
h i

¼
Z 1

�1
EH�Exp EHn

h i� �2
f EH
� �

dEH ð6Þ

where Exp EHn
h i

and Var EHn
h i

are the expectation and variance of
the homogenized elastic tensor, and f EH

� �
is the probabilistic

density function of the homogenized elastic tensor.
If the stochastic homogenized elastic tensor can be expressed

with a series expansion-based approximation, e.g.,

EHn �
X
i

EHiφi; ð7Þ

then the probabilistic characteristic can be estimated with an
approximation form as

E EHn
h i

¼
Z 1

�1
f EH
� �X

i

EHiφidE
H ð8Þ

Var EHn
h i

¼
Z 1

�1
f EH
� � X

i

EHiφi�Exp EHn
h i !2

dEH ð9Þ

where φi is an arbitrary basis function for the approximation of
the stochastic homogenized elastic tensor, and EHi is a coefficient
for each term of the basis function.

If the random variation of a microscopic quantity, for example,
Young's modulus of a component material En, can be expressed
with its expected value and a normalized random variable β as
En ¼ E0 1þβ

� �
, and it is assumed that the basis function can be

expressed by the power series as

φi ¼ βi
; ð10Þ

then, the approximated form of the homogenized elastic tensor
can be written as

EHn �
X
i

EHiβi ð11Þ

where EHi is called the ith order perturbation term or derivative.
From the perturbation-based stochastic homogenization the-

ory, the perturbation term of the homogenized elastic tensor is
computed at relatively lower computational costs.

For instance, when the microscopic elastic tensor and the
characteristic displacement vector are expressed by the asympto-
tic expansion with respect to the random variable β, the observed
value of the homogenized elastic tensor can be approximately
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