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The rotation-free or RF element method represents a non-conventional finite element method in which

the rotations are not used as dofs and the element interpolation domains are overlapping. Its obvious

advantage is that the complication of finite rotations can be avoided. In this paper, the relatively

unexplored RF plane beam element recently formulated by the authors in the course of developing a RF

triangle for thin-shell analyses is revisited. Comparing with other RF plane beam elements, the present

one is simple and physical yet its accuracy remains competitive. Using a corotational approach and the

small strain assumption, its tangent bending stiffness matrix can be approximated by a constant matrix

which does not require updating in geometric nonlinear analyses. The element is here extended to

spatial cable analyses in which the torsional stiffness can often be neglected and the sectional

properties are isotropic. Under the same nodal distributions, it is seen that the present element can

tolerate much larger load increment and time step under static and dynamic analyses, respectively,

than the two-node thin beam finite element.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Rotation-free or RF element method has attracted considerable
attention in the last two decades. An obvious advantage of the
method is that it simplifies the kinematic description under finite
rotations. While the focus of the method is on RF triangular plate/
shell elements [1–7], the RF beam elements are relatively unex-
plored until more recently. In the RF element, its interpolation
domain is larger than its integration domain which is referred to
as ‘‘element’’ for simplicity. In other words, not only the nodes
within but also adjacent to the element are employed in the
displacement interpolation. Phaal and Calladina [1] developed a
RF beam element based on the quadratic interpolation. Three
nodes are used to construct the displacement from which a
constant curvature can be derived, see Fig. 1(a). To the best
knowledge of the authors, this straight forward linear straight
beam formulation was not extended to curved beam and non-
linear analyses. Flores and Oñate [8] presented RF elements for
nonlinear analyses of plane beams and axisymmetric shells with
special emphasis on treating non-smooth and branching beams.
With respect to Figs. 1(b), 1–2, 2–3 and 3–4 are treated as straight
and their directors (n12, n23 and n34) after deformation are
computed accordingly in Ref. [8]. Based on the displaced direc-
tors, the curvatures at nodes 2 and 3 are determined and linearly
interpolated for the element bounded by the two nodes.

Oñate and Zarate [9] later included the transverse shear deforma-
tion into the formulation by introducing shear angle dofs. On the
other hand, Battini [10] proposed a RF corotational plane beam
element. The element again relies on four nodes and the corota-
tional frame is aligned with nodes 2 and 3. Using nodes 1 to 4 and
nodes 1 to 3, cubic and quadratic local deflections are interpo-
lated, respectively. The local rotation at node 2 is taken as the
average rotations derived from the two deflections. Similarly, the
local rotation at node 3 can be derived. Using the local rotations
and the zero local deflections at the two nodes, another local
cubic transverse deflection is derived for the element bounded by
nodes 2 and 3.

Very recently, the authors have formulated a RF plane beam
element in the course of developing a RF triangle plate/shell
element [11]. The formulation can be regarded as an extension of
the simple RF beam element of Phaal and Calladina [1] to the
curved beam and geometric nonlinear analyses. Comparing with
other RF beam elements, the present one is simple and physical
but its accuracy is competitive. Using a corotational approach and
the small strain assumption, its tangent bending stiffness matrix
can be approximated as a constant matrix which does not require
updating in a geometrically nonlinear analysis. It is particularly
suitable for efficient analysis of highly geometrically nonlinear
problems. Cables, which are used in cable-supported bridges and
roofs, are typical examples [12].

In computational analysis of cables, linear and higher order
line finite elements [13,14], catenary finite elements [12,15–18]
and, of course, beam finite elements can be employed. As the
catenary elements combine the analytical catenary expressions
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with the numerical method, they can yield accurate static
predictions by using very few elements.

Nevertheless, there are a couple of drawbacks in the line and
catenary elements. Firstly, they concern only the axial force and the
bending effect is ignored. This is justifiable in most but not
all cases. For example, Irvin [19] pointed out that when rapid
changes in curvature are unavoidable, the bending effect may be
locally important. Recently, Buckham et al. [20] also indicated that
the bending effect is sometimes important, e.g. in the dynamic

simulation of slack tethers used in underwater remotely operated
vehicles. Secondly, numerical instability and convergence difficul-
ties are sometimes encountered. Thus, some additional schemes
such as pre-stress, pre-strain, assumed configuration and form-
finding have been proposed [21]. Nevertheless, proper choice of
these schemes and the related settings are not straight forward. Of
course, these drawbacks do not exist in the beam finite element.
Recently, a ‘nodal coordinate element’ [22,23] has been proposed to
deal with aforementioned drawbacks. The element takes bending
and transverse shear effects into account. However, in their
formulation, not only the nodal coordinates but also the slopes of
the coordinates need to be taken as the nodal dofs. For 3D analysis,
each node carries 12 dofs. The formulation is complicated and the
computational effort is considerably large.

In the present paper, the RF beam element proposed in
Ref. [11] will be re-visited and applied to the cable applications.
The outline of this paper is as follows. The linear formulation of
the beam element is reviewed in Section 2 followed by some
numerical examples in Section 3. In Section 4, the corotational
approach is employed to extend linear element to geometrically
nonlinear analyses. Nonlinear numerical examples are given
in Section 5. It should be remarked that the materials presented
in Sections 2 and 4 have been similarly presented in Ref. [11].
However, Ref. [11] covers linear and nonlinear straight beams,
curved beams, plates and shells. Consequently, only two smooth
and relatively unconstrained beam examples are presented. The
examples presented here are markedly different in nature from
the two in Ref. [11]. They include constrained and folded beams
which have also been considered by other RF beams. Our RB beam
is indeed comparable to those published by the others in accuracy
yet its formulation is much simpler. In Section 6, a pseudo 3D RF
beam element is newly developed and employed in cable ana-
lyses as presented in Section 7. Under the same nodal distribu-
tions, it can be seen that the present element (with only
translational dofs) can tolerate much larger load increment and
time step under static and dynamic analyses, respectively, than
the two-node thin beam finite element (with translational and
rotational dofs).
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Fig. 1. (a) Three consecutive nodes along a straight plane beam. (b) Four

consecutive nodes along a curved plane beam.

Fig. 2. Three consecutive nodes along a curved plane beam.
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Fig. 3. Imposition of symmetric boundary condition.
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Fig. 4. (a) Simple supported plane beam under uniform load. (b) Normalized

deflections along the beam.
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