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a b s t r a c t

The continuous surface cap (MAT 145) model in LS-DYNA is known by its elegant and robust theoretical
basis and can well capture many important mechanical behaviors of concrete. However, it appears to be
less popular than many other constitutive models in engineering application due to many material
parameters involved in the model formulation which are difficult to calibrate. This study presents an
effective calibration method to determine the material parameters for this model as functions of uniaxial
compression strength and the maximum aggregate size of concrete according to formulas from CEB-FIP
code and concrete test data from other published literatures. The obtained parameters can be
conveniently used for occasional users with little or no information on concrete in hand. We further
compare the predictions of stress–strain relationship in tension and compression under different
confining pressures as well as hydrostatic compression by the model, and validate the model based
on impact test of RC beams. Besides, the model is further compared against a similar model-MAT 159 in
terms of model performance. The results demonstrate that the model based on the calibrated
parameters is capable of offering reasonable and robust predictions.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Arguably one of the most widely used man-made materials,
concrete underpins the performance and safety for key structures
relevant to civil engineering, onshore and offshore engineering,
nuclear facility protection and many others. The dynamic
responses of concrete when subjected to impact or blast loads
are of particular importance in many of these engineering fields,
and relevant research has hence attached much interest. Computer
modeling has now been widely adopted as a cheap and effective
way in assisting the design of (reinforced) concrete structures
under those extreme loads. Among many key ingredients that
affect reliable and accurate predictions by a numerical tool, an
appropriately developed and calibrated constitutive model to
describe the dynamic behavior of concrete subjected to dynamic
loads plays a core role.

There have been a good number of constitutive models devel-
oped in the literature for concrete, with forms ranging from
relatively simple to more sophisticated (see a recent review in
[1,2]). They have also been implemented in commercial software
such as LS-DYNA [3], AUTODYN [4] and ABAQUS/explicit [5]. These
models can be generally divided into three categories according to

how the plastic deformation is calculated. Category one normally
adopts an associated flow to calculate the plastic strain increment,
and may capture the plastic volume expansion (dilatancy) [6]
caused by shear loading at low confining pressure. It considers
coupled volumetric and shear behavior (i.e. shear enhanced
compaction and pressure dependence of shear strain) of concrete.
Typical examples of this category include the geologic cap (MAT
25), Schwer Murray Cap, also called continuous surface cap (MAT
145), CSCM Concrete (MAT 159), Mohr Coulomb (MAT 173), and
Druker Prager (MAT 193) [3]. Category two generally employs the
Prandtl–Reuss flow theory (where the Von Mises criterion is used
as the plastic potential) to calculate the plastic strain increment.
The plastic volume strain is obtained from the equations of state
(EOS), and the plastic volume strain increment is independent of
the incremental flow rule (the Prandtl–Reuss flow theory). Since
shear and volumetric behaviors are decoupled, the phenomenon
of shear dilation cannot be captured. Typical models belong to this
category are the soil and form (MAT 5/14) [3], pseudo tensor (MAT
16) [3], concrete damage (MAT 72) [3,7], Winfrith concrete (MAT
84/85) [3,8], Johnson Holmquist concrete (MAT 111) [3,9], RHT
(MAT 272) [3,10] and so on. Those models have been widely used
to model concrete under high impact loads. The third category
commonly assumes a non-associated flow in calculating the plastic
strain increment. With a different plastic potential surface than
the yield surface, the shear dilatancy can be well controlled.
A typical example of this category is the plastic-damage model
[5,11].
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When concrete is subject to low velocity impact, there are
typical features needing to be captured by a model, such as shear
enhanced compaction, dilatency before and after peak strength,
pre-peak hardening, post-peak softening, modulus reduction/stiff-
ness degradation under cyclic loading, irreversible deformation,
and localized damage accumulation [12,13]. With a sound theore-
tical basis, the MAT 145 available in LS-DYNA can well capture
those behaviors together [3]. However, it has not been as popular
as simple ones such as the MAT 72, MAT 84/85 and the MAT 111 in
engineering application, due primarily to the complexity of the
model with many material parameters involved. For example, a
total of 17 material parameters is required to be provided by the
user in this model to define the shear and cap surface, which
demands exceedingly complicated experiments ranging from uni-
axial compression, uniaxial tension, triaxial compression (TXC),

torsion (TOR), triaxial extension (TXE) and hydrostatic test to be
conducted for their calibration, which greatly limits the practical
applicability of the model. On the other hand, a “sister” model-
MAT 159 [3,14,15], with internal material parameters generation
based upon the unconfined compression strength f 0c of concrete,
aggregate size and the units has been included in LS-DYNA since
version 971. This model uses the same methodology as the MAT
145 to predict the behavior of concrete before peak strength, and is
different from the latter in terms of strain (post peak) softening
portion for example the evolution of the both brittle damage and
ductile damage norm. A comparison between the MAT 159 and
MAT 145 will be provided in this research.

Indeed, similar issue exists for the MAT 72 which has a total
of 49 user defined parameters. Karagozian & Case [16,17], Marko-
vich et al. [18] managed to offer an approach of automatically

Notation

MAT 145 continuous surface (Schwer Murray) cap
MAT 159 CSCM concrete
MAT 72 concrete damage
MAT 72R3 concrete damage REL3 (K&C concrete)
MAT 25 geologic cap
MAT 111 Johnson Holmquist concrete
MAT 16 Pseudo tensor
MAT 272 RHT
MAT 84 Winfrith concrete
EOS equations of state
TXC triaixal compression
TOR torsion
TXE triaxial extension
CDM continuum damage mechanics
DERR damage energy release rate used by Simo and Ju [31]
RC reinforced concrete
I1; J2; J3 three invariants of stress tensor
R I1; J3
� �

Rubin scaling function in Eq. (1), used by Rubin [27]
κ; κ0 cap hardening parameter in Eqs. (3) and (5)
Ff ðI1Þ; α; β; γ; θ strength in triaxial compression in Eqs.

(1) and (2a)
Qi; αi; βi; γi; θi i¼ 1;2ð Þ strength in torsion and triaxial exten-

sion in Eqs. (2b) and (2c)
Fc I1; κð Þ the cap surface in Eqs. (1) and (3)
XðκÞ; LðκÞ; Xðκ0Þ the cap surface parameters in Fig. 1.
S ratio of the major to minor axes of the cap surface in

Eqs. (4), (18a), (18b) and (19e)
εpv ; W plastic volumetric strain and the maximum value in

Eq. (6)

D1; D2 parameters determining the shape of pressure–
volume in Eq. (6)

σ; σ stress tensor and effective stress tensor in Eq. (7)
d; d7 ; G τ7

� �
scalar damage variable in Eqs. (7) and (8)

r70 ; τ7 damage threshold and undamaged energy norm in
Eq. (8)

f 0c; f
0
bc uniaxial and biaxial compression strength of concrete

f 0t ; f
0
bt uniaxial and biaxial tension strength of concrete

τ0; σ0 shear strength and normal strength in Eq. (10), used
by Mills and Zimmerman [20]

g σij
� �

; g I1; J2
� �

Gibbs free energy density (per unit volume) in
Eqs. (22) and (24)

g1 J2
� �

; g2 I1
� �

deviatoric and volumetric part of Gibbs free
energy density in Eq. (22)

E; γ Yong’s modulus and Poisson’s ratio
K; G bulk modulus and shear modulus
D�1
ijkl fourth-order linear-elastic compliance matrix tensor

of the intact material in Eq. (21)
Iijkl; I

d
ijkl fourth-order identity tensor and deviatoric tensor in

Eq. (21)
GF ; GF0 the mode I fracture energy and base value of fracture

energy per unit area in Eqs. (36)–(31)
σ(w), ω the stress and displacement in Eqs. (26)–(32)
Gc the compression fracture energy in Eqs. (32)–(36)
dmax the maximum aggregate size in Table 2
ln a characteristic length of the finite element in Eqs.

(29), (31), (35), (36)
A7 ; B7 damage parameters determining the strain softening

curve in Eqs. (8) and (31), (36)
σij; ~σ ij the viscid and inviscid stress tensor in Eqs. (37)–(39)
η a fluidity coefficient parameter in Eqs. (37)–(39)
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Fig. 1. Compressive meridional profile of the yield surface in the MAT 145: (a) smooth cap failure function, (b) non-dimensional function used for cap portion.
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