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a b s t r a c t

In [1], a definition is given of the ‘most normal’ normal. This is the normal that minimizes the maximal
angle with a given set of normals. The algorithm proposed does indeed compute a normal that verifies
the previous property. However, this may not always be the ‘most normal’ normal. The previous normal
should have more appropriately been called the ‘most visible’ normal. In the present work, an algorithm
is designed to compute the real ‘most normal’ normal, namely the normal that maximizes the minimum
angle with the planes carried by the triangles surrounding a point. This normal is the optimal point
normal for boundary layer mesh generation if it is in the visibility cone. The algorithm consists in
computing the generalized Voronoi diagram on the sphere of the edges created by the intersection
between the triangles and the sphere. Numerical results illustrate the method, and compare with the
previous algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Surface triangulations are used to describe surfaces in many
computer applications. Each triangle carries unambiguously a face
normal, but some ambiguity may arise when defining a normal at
the vertices or at the edges of the triangulation. Point normals are
usually required in visualization [2], rendering [3], medical applica-
tions, boundary conditions in finite volume and finite elements
solvers [4], free surface problems [5], coupled fluid-structure pro-
blems [6], tangent plane computations, curvature estimations [7,8],
surface to surface interpolation [9], and so forth. One strategy to
tackle the point normal computation is to consider the triangles as a
discretization of a smooth surface. The problem therefore consists in
providing a point normal as close as possible to the smooth surface
normal. A different viewpoint is to consider the triangulation as a
discrete object without specific connections to a smooth surface. In
the context of a boundary layer mesh generator, prisms are extruded
from the surface triangulation along the point normals [10–13]. An
accurate computation of the normal is required, particularly along
corners and ridges, since a bad normal may lead to a premature
interruption of the boundary layer extrusion, a loss of orthogonality,
or the creation of low quality elements.

In a previous work [1], a first definition of the ‘most normal’
normal was proposed. This normal minimizes the maximal angle
with the face normals surrounding a given point. As noticed in

Henrion et al. [14], this is one of many different definitions of a center
of a cone. The algorithm proposed in the previous reference produces
such a normal. Given the cone of normals emanating from the faces
surrounding the vertex, the normal generated corresponds to the
center of this cone. From a visibility standpoint, this normal is
optimal by construction. For discrete remeshings, this provides a
robust criterion to evaluate possible surface foldings [15,16]. It would
therefore have been more appropriate to call it the ‘most visible’
normal. Fig. 1 shows nevertheless a drawback of this approach.
Regardless of the local convexity or concavity, the same visibility
cone is generated at the vertex. As noticed in [17], there is a duality
between the plane carried by the triangles surrounding a vertex, and
the face normals carried by these faces. In the projective plane [18],
lines and points are dual objects, which can be interpreted on the
sphere as a duality between three dimensional planes that contain
the origin, and normals. Therefore, the dual strategy of minimizing
the maximal angle between a vector and some face normals would
be to maximize the minimum angle between this vector and the
planes carried by the triangles. Fig. 2 depicts the same configurations
seen from the dual viewpoint. While it seems similar in a two
dimensional representation, it is not in three dimensions, since in
two dimensions a point normal aligned on the bisector defines only
two angles. Therefore minimizing the maximal angle is equivalent to
maximizing the minimal angle.

The normality concept inherits from a scalar product definition.
Since a scalar product also defines a distance, it is clear that there is
an intimate relationship between normality and distance. For
example, for a G1 surface [19], a tangent plane is available. Therefore
the normal is computed as a normal to a plane, relying on the
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well-known cross product formula of the tangent vectors. However,
degenerate patches may be created due to a particular parameter-
ization. This does not mean that the normal does not exist. Some
references [20,21] propose methods to compute normals for these
situations. More generally, if a distance can be defined, a normal
vector can also be obtained. A distance field is generated by
resolving the Eikonal equation [22,23]. Normals are then obtained
as a by product of the distance field through its gradient.

The organization of this paper is as follows. In Section 2, a short
review of previously proposed normal computations is given. Then,
Section 3 presents the algorithm to compute the ‘most normal’ normal,
relying on the spherical generalized Voronoi diagram. Section 4 focuses
in detail on the algebra and implementation of the spherical general-
ized Voronoi diagram. Finally, Section 5 illustrates the method through
numerical examples.

2. Normal computation

Normal computation can be envisioned from different view-
points depending on the application. As previously mentioned, a
first viewpoint relies on the geometry of an underlying smooth
surface that interpolates the vertices. When considering the point
normal computation from an interpolation viewpoint, a generic
strategy consists in taking a weighted average of all the face
normals connected to a given point and normalizing it. With unit
weights [2], a least-square approximation of the normal is sought.
Some straightforward variations consider a different weighted
average of the face normals according to Frey et al. [24]:

� weighted with the surface area of each triangle,
� weighted with the inverse of the surface area,
� weighted with the angle made by the two edges connected in

the point under consideration.

Max [25] proposes a weighted sum of face normals, where the
weights are computed in such a way that for a sphere surface,
normals are exact regardless of the triangle size. Recently, Ubach
et al. [26] propose a study of different point normal computations
based on this strategy, as well as new weights formulae.

A second viewpoint may be based on a pure discrete setting.
A direct application of this approach is boundary layer mesh generation,
where the discrete surface is more relevant than the CAD smooth
surface, since it will influence the quality of the generated elements.
Within this context, the previous strategies may fail to produce either
the ‘most visible’ normal or the ‘most normal’ normal because they are
not associated with any theoretical optimum. Regarding the ‘most
visible’ normal, a simple example is given by Pirzadeh in [27] where the
trailing edge of a wing is meshed with four elements on the upper
part and three on the lower part of the wing, producing an un-
balanced normal in case of unit weights. A notable improvement was
proposed in the context of RANS gridding by Kallinderis [11], based on
the visibility cone of each point. The algorithm consists in choosing the
pair of normals which produces the largest angle, taking a plane
bisector of this faces, limiting the visibility on this plane by projecting
the other faces on this plane, and finally taking the bisector of the angle
created by the edges which limit the most the visibility in this plane.
This normal is always valid if the faces allow it. Closely related, Pirzadeh
in [27], proposed an iterative method relying on a predictor corrector
basis. Finally, Aubry et al. [1] provide the optimum normal, as far as
visibility is concerned.

A different approach was followed by Sani et al. [4], where
normals are computed to satisfy the discrete incompressibility
condition in a finite element context. Normals are then fully
imposed on the mass conservation criterion, not considering the
geometrical aspect of the boundary.

Finally, Wang et al. solve the Eikonal equation in [28] to offset the
surface in the direction of the gradient of the solution. This work
interestingly shifts the problem from a geometric triangle evaluation
to a distance evaluation, where ultimately the normal is extracted as
the gradient of the distance field. A similar approach is also proposed
by Flin et al. [3], without relying on any triangulated surface.

3. The real ‘most normal’ normal

In this section, the main goal is to seek the normal that maxi-
mizes the minimal angle with the faces surrounding the vertex.
Instead of computing vector to vector angles, vector to plane angles
are involved, where all the vectors can be identified with a point on
the unit sphere, and all the planes need only two points to be
defined since they all contain the origin. The task is much more
complex. Before, the ‘most visible’ normal was minimizing the
maximum angle between normals, creating the largest cone that
includes all normals. The dual strategy is equivalent to maximizing
the minimum plane angle since the face and plane angles are linked
through a α¼ ðπ=2Þ�β relationship. In terms of geodesic distance
on the sphere, for the ‘most visible’ normal, the face normals were
creating points on the unit sphere, and the goal was to obtain a point
on the sphere that minimized the geodesic distance with all the
other points. In this new approach, the new point should maximize
the distance with the trace of the surrounding faces on the sphere,
namely arcs of great circles. While the first method was closely
related to the farthest Voronoi diagram of points, the new one
consists in computing the generalized Voronoi diagram of arcs on
the sphere. Every vertex of this generalized Voronoi diagram will be
at the center of a small circle, therefore maximizing the geodesic
distance. The possibly nonunique centers that have the maximum
radius will define the ‘most normal’ normal.

In order to compute the generalized Voronoi diagram, one of the
first methods in the plane is the one proposed by Lee [29]. Yao et al.
[30] design a simpler algorithm to compute it. Regarding the Voronoi
diagram on the sphere, Dinis et al. [31] and Zheng et al. [32] generalize
the point Voronoi diagram to the sphere. Finally, Na et al. [33] propose
to build an arbitrary spherical Voronoi diagram from two planar
Voronoi diagrams of the same type and some clever merging of both

Fig. 1. The visibility cone is the same regardless of concavity or convexity.

Fig. 2. The ‘most normal’ cone is not the same depending on concavity or convexity.
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