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This paper proposes amultiway calibration strategy implementing themodelingwithMCR-ALS andU-PLS/RBL of
second-order chromatographic data for quantitation of six analytes: gliclazide, glibenclamide, glimepiride, aten-
olol, enalapril and amlodipine in serum samples, in an analysis time of 3 min.
The performance of both algorithms was compared in terms of predictive ability, showing relative error of pre-
diction values below 10% in all cases. LOD values calculated are below 30 ng mL−1 for all the studied drugs,
which allow detection in human serum in patients under treatment. U-PLS/RBL has higher sensitivity and better
detection and quantification limits for all the studied analytes; however results obtained by MCR-ALS enable its
usage as well. Both methods provide comparable results for glibenclamide, glimepiride and gliclazide. With this
multiway calibration strategy, the presence of enalapril, amlodipine and atenolol could be quantitatedwith high
accuracy. Run time was reduced by 50% considering previous reports, as well as reduction of solvents, in accor-
dance with green chemistry principles.
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1. Introduction

Diabetes is a disease affecting 9% of the Argentinian population [1].
Type II diabetes is the most common form of diabetes in which cellular
resistance to insulin and insufficient pancreatic secretion derive in hy-
perglycemia. In order to diagnose and treat type II diabetes properly, it
is mandatory to develop analytical methods for management and phar-
macological treatment monitoring.

Sulfonylureas are oral antidiabetic drugs that increase insulin release
form pancreatic beta cells. Gliclazide, glibenclamide and glimepiride are
second generation sulfonylurea drugs used as initial treatment of type II
diabetes in patients who cannot control hyperglycemia with diet and
exercise [2].

Diabetic patients also have a high prevalence of hypertension.
Pharmacological therapy frequently combines antihypertensive
and antidiabetic drugs [3]. Atenolol belongs to the beta blocker drug
group; enalapril is an angiotensin-converting enzyme inhibitor; and

amlodipine is a calcium channel blocker, all of thesewith antihyperten-
sive action. Usual seric concentration of the three antihypertensive and
the three antidiabetic analyzed drugs are: atenolol 0.30–0.70 μg mL−1;
amlodipine 0.004–0.017 μg mL−1; enalapril 0.l5–0.30 μg mL−1;
gliclazide 2.00–8.00 μg mL−1; glibenclamide 0.14–0.35 μg mL−1; and
glimepiride 0.20–0.31 μg mL−1 [4].

In a previous work, we developed a novel dispersive liquid–liquid
micro extraction (DLLME) procedure and a HPLC–UV method, opti-
mized and fully validated for the determination of gliclazide,
glibenclamide and glimepiride in serum, in the presence of atenolol,
enalapril and amlodipine. The advantages of the latter method are sim-
plicity of operation, rapidity, low cost, high–recovery, high enrichment
factor, and environmental benignity fitting the requirements of green
analytical chemistry [5].

Multivariate calibration strategies are quickly gaining attention in
analytical chemistry, given the possibility of quantifying analytes in
complex matrixes in the presence of interferents. If one calibrates
with pure analyte standards, matrix data is recorded and sufficient se-
lectivity is present in the various datamodes; it is possible to predict an-
alyte concentration in any future sample, no matter how many signal-
overlapping constituents. This is referred to as the “second order advan-
tage”, the signal from unexpected constituents can be modeled and
mathematically removed, in such away that their effect is negligible [6].
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An important number of algorithms have been used in order to ex-
ploit the second-order advantage: generalized rank annihilation
(GRAM) [7], direct trilinear decomposition (DTLD) [8], self-weighted al-
ternating trilinear decomposition (SWATLD) [9], alternating penalty tri-
linear decomposition (APTLD) [10], parallel factor analysis (PARAFAC)
[11], multivariate curve resolution alternating least squares (MCR–
ALS) [12], bilinear least squares (BLLS) [13], unfolded partial least
squares/residual bilinearization (U–PLS/RBL) [14] and artificial neural
networks followed by residual bilinearization (ANN/RBL) [15].

In this paper, a multiway calibration strategy implementing two
well-known algorithms (MCR-ALS and U-PLS/RBL) are proposed for
quantitation of gliclazide, glibenclamide, glimepiride, atenolol, enalapril
and amlodipine in serum samples, in a shorter analysis time than that
previously reported [5].

2. Theory

2.1. MCR-ALS

This algorithmworks on a data set by optimizing initial estimates in
an ALS way within each iterative cycle under the action of suitable con-
straints until a convergence criterion is fulfilled [16].

Each HPLC-DAD chromatographic run of a single sample provides a
data matrix, indicated as D (J × K), where the J rows representing the
UV spectra recorded at the different elution times and the K columns
representing the chromatographic elution profiles recorded at the dif-
ferent wavelengths. This corresponds to a bilinear model based on the
multi wavelength extension of Beer's absorption law:

D ¼ CST þ E ð1Þ

where C (J × N) is the matrix of elution profiles of the analyzed com-
pounds and ST (N × K) is the matrix of their pure spectra. N is the num-
ber of components.

Multiset structures are obtained combining several chromatograph-
ic runs. These structures are organized appending the Di data matrices
(the index i indicates a chromatographic run for a specific sample)
one on top of each other. The resulting Daug (column-wise augmented)
multiset can be decomposed into the Caug matrix, which contains the Ci
submatrices of the resolved elution profiles for the single chromato-
graphic runs, ST the matrix of pure spectra common to all chromato-
grams analyzed and Eaug, the difference between the raw data and the
reconstructed data by the CaugST model, i.e., the experimental error
not explained by the bilinear model. This bilinear model assumes that
the components in the Di data matrices included in the column-wise
augmented data matrix share the same pure spectra, whereas they
can have different concentration profiles.

TheMCR-ALS algorithm calculatesCaug and ST from the sole informa-
tion in the experimental data, Daug. The first step is to determine the
number of eluted compounds present in a particular cluster of peaks,
i.e., the “chemical rank” associated with the data matrix. This determi-
nation is performed with a principal component analysis on the Daug

matrix. Then, an initial estimate of the ST matrix is obtained with tech-
niques based on the detection of purest variables [17]. These initial
spectral estimates are iteratively optimizedwith a constrained alternat-
ing least squares regression procedure.

The iterative optimization is performed until the results agree with
the convergence criterion, which often means that the difference in
lack of fit between two consecutive iterations is below a predefined
threshold (0.01% change in standard deviation). The lack of fit (%LOF)
and the explained variance (EV) express thefitting quality of the resolu-
tion results; they are used to choose the best MCR-ALS model for each
chromatographic segment.

Several constraints can be applied to confer chemical meaning to
the profiles obtained by MCR-ALS in the analysis of a single HPLC-DAD
run, such as non-negativity, unimodality, spectral normalization and

component correspondence in order to reduce the effects of rotational
ambiguity.

Finally, the areas under the matrix Daug are used to build a
pseudounivariate plot relating them with the nominal concentrations
of the standards. This plot is then used to predict the analyte concentra-
tion in the unknown sample.

2.2. U-PLS/RBL

Unfolded partial least-squares (U–PLS) is a powerful algorithm for
processing vectorial signals per sample, it provides multiway data pro-
cessing with enough flexibility to face calibration protocols based on
complex data [16]. It is complemented by residual bilinearization
(RBL) which models the residues of U-PLS for the test sample as a sum
of bilinear contributions from the unexpected components.

The first step in U-PLS calibration is to convert the calibration data
arrays into vectors. This will produce a JK × 1 vector from a J × K data
matrix. A new calibration matrix Xcal, suitable for the application of
PLS regression, is built by placing all column vectors adjacent to each
other. The latter Xcal matrix can therefore be of size JK × I (I= number
of calibration samples) for second-order data, and is subjected to the
classical PLS regression analysis.

As it iswell-known for PLS, a set of loadingsP andweight loadingsW
(JK × A, where A is the number of latent variables) as well as regression
coefficients v (sizeA×1) are obtained after the calibration step. Usually,
the leave-one-out cross-validation procedure is implemented for
selecting the parameter A [18]. Subsequently, v is employed to estimate
the analyte concentration through the following equation:

yu ¼ tuTv ð2Þ

where tu (size A × 1) is the test sample score, obtained by projection of
the (unfolded) data for the test sampleXu [vec(Xu)] of size (JK× 1) onto
the space of the A latent factors:

tu ¼ WTP
� �–1

WTvec Xuð Þ ð3Þ

If the sample contains unexpected components, the scores given by
Eq. (3) are not suitable for analyte prediction using Eq. (2), generating
abnormally large residuals in comparison with the typical instrumental
noise assessed by replicate measurements.

RBL intends to model the residuals assuming that they can be ar-
ranged into a bilinear matrix. This procedure fits the sample data to
the sum of two contributions: 1) the portion of the test data, which
can be explained by the calibration PLS loadings, and 2) the contribution
from the potential interferents modeled by a certain number of princi-
pal components (NRBL). The complete U-PLS/RBLmodeling equation in-
volves a residual error term to be minimized by least squares:

Xu ¼ reshape PtRBLð Þ þ BRBLTRBL
T þ ERBL ð4Þ

The product (BRBLTRBLT ) is the principal component analysis (PCA)
model for the residual matrix [(Xu–reshape(PtRBL)] with NRBL principal
components, with “reshape” meaning the transformation JK × 1 vector
into a J × K data matrix. Minimization of ERBL allows one to retrieve
the final score vector tRBL. Initially, the residual matrix contains contri-
butions from both the calibrated analytes and the potential interferents.
Modeling this lattermatrixwith PCA extractsNRBL bilinear components;
themore these bilinear components resemble the unexpected contribu-
tions, the better the product is able to model the behavior of the
analytes in the test sample, leading to a continuous decrease in the
residuals.

Generally RBL can be carried out by a Gauss-Newton minimization.
Once the residuals ERBL are minimized in Eq. (4), the output is a final
tRBL vector which represents the true contribution of the calibrated
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