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a b s t r a c t

Free and forced axial vibrations of damped nonlocal rods are investigated. Two types of nonlocal

damping models, namely, strain-rate-dependent viscous damping and velocity-dependent viscous

damping, are considered. A frequency-dependent dynamic finite element method is developed to

obtain the forced vibration response. Frequency-adaptive complex-valued shape functions are pro-

posed to obtain the dynamic stiffness matrix in closed form. The stiffness and mass matrices of the

nonlocal rod are also obtained using the conventional finite element method. Results from the dynamic

finite element method and conventional finite element method are compared. Using an asymptotic

analysis it is shown that, unlike its local counterpart, a nonlocal rod has a maximum cut-off frequency.

A closed-form exact expression for this maximum frequency as a function of the nonlocal parameter

has been obtained for undamped and damped systems. The frequency response function obtained using

the proposed dynamic finite element method shows extremely high modal density near the maximum

frequency. This leads to clustering of resonance peaks which is not easily obtainable using classical

finite element analysis.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Research on size-dependent structural theories for the accurate
design and analysis of micro and nanostructures is growing rapidly
[1–4]. This is because, though molecular dynamic (MD) simulation is
justified for the analysis of nanostructures [5,6] such as nanorods,
nanobeam, nanoplates, nanoshells and nanocones, the approach is
computationally exorbitant for nanostructures with large numbers
of atoms. This calls for the use of conventional continuum
mechanics [7] and finite elements in analysis of nanostructures.
However, classical continuum modelling approach is considered
scale-free. It fails to account for the effects arising from the small-
scale where size-effects are prominent.

Nanoscale experiments demonstrate that the mechanical
properties of nano dimensional materials are much influenced
by size effects or scale effects [8,9]. Size effects are related to
atoms and molecules that constitute the materials. Further,
atomistic simulations have also reported size effects on the
magnitudes of resonance frequency and buckling load of nanos-
cale objects such as nanotubes and graphene [10,11]. The applica-
tion of classical continuum approaches is thus questionable in the
analysis of nanostructures such as nanorods, nanobeams and
nanoplates. Examples of nanorods and nanobeams include carbon

and boron nanotubes, while nanoplates can be graphene sheets or
gold nanoplates.

One widely promising size-dependant continuum theory is the
nonlocal elasticity theory pioneered in [12] which brings in the
scale effects and underlying physics within the formulation.
Nonlocal elasticity theory contains information related to the
forces between atoms, and the internal length scale in structural,
thermal and mechanical analyses. In the nonlocal elasticity
theory, the small-scale effects are captured by assuming that
the stress at a point is a function of the strains at all points in the
domain. Nonlocal theory considers long-range inter-atomic inter-
action and yields results dependent on the size of a body [12].
Some drawbacks of classical continuum theory can be efficiently
avoided and the size-dependent phenomena can be reasonably
explained by nonlocal elasticity. Recent literature shows that the
theory of nonlocal elasticity is being increasingly used for reliable
and fast analysis of nanostructures. Studies include nonlocal
analysis of nanostructures viz. nanobeams [13–15], nanoplates
[16], carbon nanotubes [17], graphene [18], microtubules [19] and
nanorings [20].

Recently due to elevated interests in nanotechnology, various
one-dimensional nanostructures have been realised. They include
nanorods, nanowires, nanobelts, nanotubes, nanobridges, nano-
nails, nanowalls and nanohelixes. Among all the one-dimensional
nanostructures, nanotubes, nanorods and nanowires are the
most widely studied. This is because of the easy material for-
mation and device applications. One important one-dimensional
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nanostructure is nanorods. Nanorods [21] are one-dimensional
objects ranging from 1 to 3000 nm in length. They can be grown
from various methods, including (i) vapour phase synthesis [22],
(ii) metal-organic chemical vapour deposition [23], (iii) hydro-
thermal synthesis [24]. Nanorods have found application in a
variety of nanodevices, including ultraviolet photodetectors,
nanosensors, transistors, diodes and LED arrays.

Axial vibration experiments can be used for the determination of
the Youngs modulus of Carbon Nanotubes (CNTs). Generally, the
flexural modes occur at low frequencies. However vibrating nano-
beams (CNTs) may also have longitudinal modes at relatively high
frequencies and can be of very practical significance in high
operating frequencies. Nanorods when used as electromechanical
resonators can be externally excited and exhibit axial vibrations.
Furthermore for a moving nanoparticle inside a single-walled
carbon nanotube (SWCNT), the SWCNT generally vibrates both in
the transverse and longitudinal directions. The longitudinal vibra-
tion is generated because of the friction existing between the outer
surface of the moving nanoparticle and the inner surface of the
SWCNT. It is also reported [25] that transport measurements on
suspended SWCNTs show signatures of phonon-assisted tunnelling,
influenced by longitudinal vibration (stretching) modes. Chowdhury
et al. [26] have reported sliding axial modes for multiwalled carbon
nanotubes (MWCNTs). Tong et. al [27] have considered axial
buckling of MWCNTs with heterogeneous boundary conditions.

Only limited work on nonlocal elasticity has been devoted to
the axial vibration of nanorods. Aydogdu [28]developed a non-
local elastic rod model and applied it to investigate the small scale
effect on the axial vibration of clamped-clamped and clamped-
free nanorods. Filiz and Aydogdu [29] applied the axial vibration
of nonlocal rod theory to carbon nanotube heterojunction sys-
tems. Narendra and Gopalkrishnan [30] have studied the wave
propagation of nonlocal nanorods. Recently Murmu and Adhikari
[31] have studied the axial vibration analysis of a double-
nanorod-system. In this paper, we will be referring to a nanorod
as a nonlocal rod, so as to distinguish it from a local rod.

Several computational techniques have been used for solving
the nonlocal governing differential equations. These techniques
include Naviers Method [32], Differential Quadrature Method
(DQM) [33] and the Galerkin technique [34]. Recently attempts
have been made to develop a Finite Element Method (FEM) based
on nonlocal elasticity. The upgraded finite element method in
contrast to other methods above can effectively handle more
complex geometry, material properties as well as boundary and/
or loading conditions. Pisano et al. [35] reported a finite element
procedure for nonlocal integral elasticity. Recently some motivat-
ing work on a finite element approach based on nonlocal
elasticity was reported [36]. The majority of the reported works
consider free vibration studies where the effect of non-locality on
the eigensolutions has been studied. However, forced vibration
response analysis of nonlocal systems has received very little
attention.

Based on the above discussion, in this paper we develop the
dynamic finite element method based on nonlocal elasticity with
the aim of considering dynamic response analysis. The dynamic
finite element method belongs to the general class of spectral
methods for linear dynamical systems [37]. This approach, or
approaches very similar to this, is known by various names such
as the dynamic stiffness method [38–48], spectral finite element
method [37,49] and dynamic finite element method [50,51].
Some of the key features of the method are:

� The mass distribution of the element is treated in an exact
manner in deriving the element dynamic stiffness matrix.
� The dynamic stiffness matrix of one-dimensional structural

elements, taking into account the effects of flexure, torsion,

axial and shear deformation, and damping, is exactly deter-
minable, which, in turn, enables the exact vibration analysis by
an inversion of the global dynamic stiffness matrix.
� The method does not employ eigenfunction expansions and,

consequently, a major step of the traditional finite element
analysis, namely, the determination of natural frequencies and
mode shapes, is eliminated which automatically avoids the
errors due to series truncation.
� Since modal expansion is not employed, ad hoc assumptions

concerning the damping matrix being proportional to the mass
and/or stiffness are not necessary.
� The method is essentially a frequency-domain approach sui-

table for steady state harmonic or stationary random excita-
tion problems.
� The static stiffness matrix and the consistent mass matrix

appear as the first two terms in the Taylor expansion of the
dynamic stiffness matrix in the frequency parameter.

So far the dynamic finite element method has been applied to
classical local systems only. In this paper we generalise this
approach to nonlocal systems. One of the novel features of the
analysis proposed here is the employment of frequency-
dependent complex nonlocal shape functions for damped sys-
tems. This in turn enables us to obtain the element stiffness
matrix using the usual weak form of the finite element method.

The paper is organised as follows. In Section 2 we introduce
the equation of motion of axial vibration of undamped and
damped rods. Natural frequencies and their asymptotic beha-
viours for both cases are discussed for different boundary condi-
tions. The conventional and the dynamic finite element method
are developed in Section 3. Closed form expressions are derived
for the mass and stiffness matrices. In Section 4 the proposed
methodology is applied to an armchair single walled carbon
nanotube (SWCNT) for illustration. Theoretical results, including
the asymptotic behaviours of the natural frequencies, are numeri-
cally illustrated. Finally, in Section 5 some conclusions are drawn
based on the results obtained in the paper.

2. Axial vibration of damped nonlocal rods

2.1. Equation of motion

The equation of motion of axial vibration for a damped
nonlocal rod can be expressed as
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This is an extension of the equation of motion of an undamped
nonlocal rod for axial vibration [28,31,52]. Here EA is the axial
rigidity, m is the mass per unit length, e0a is the nonlocal
parameter [12], Uðx,tÞ is the axial displacement, Fðx,tÞ is the
applied force, x is the spatial variable and t is the time. The
constant bc1 is the strain-rate-dependent viscous damping coeffi-
cient and bc2 is the velocity-dependent viscous damping coeffi-
cient. The parameters ðe0aÞ1 and ðe0aÞ2 are nonlocal parameters
related to the two damping terms respectively. For simplicity we
have not taken into account any nonlocal effect related to the
damping. Although this can be mathematically incorporated in
the analysis, the determination of these nonlocal parameters is
beyond the scope of this work and therefore only local interaction
for the damping is adopted. Thus, in the following analysis we
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