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a b s t r a c t

This paper investigates the use of a multiscale finite element approach to study the interaction between
elastic waves and localized defects. The analysis of wave–defect interaction is of fundamental
importance for the development of ultrasonic non-destructive testing and SHM applications. The
method considered herein, known as Geometric Multiscale FEM, formulates multi-node elements which
can model small geometrical features without resorting to excessive mesh refinements and without
compromising the quality of the discretization in the uniform portion of the domain. The possibility of
formulating libraries of damaged multiscale elements makes the method particularly appealing for
conducting extensive parametric studies.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Among different approaches used for the monitoring of structural
integrity, waves-based methods have shown great potentials for their
capability to scan relatively wide portions of a structure and for being
sensitive to a variety of damage types [1–4]. Typical defects encoun-
tered in structural components include cracks and corrosion in
metallic materials, and porosity, delaminations, matrix and/or fiber
cracking in composites. The development of effective elastic waves-
based inspection techniques that not only detect damage but also
provide some quantitative measure of its severity relies on numerical
simulations which investigate the interaction between propagating
waves and defects of different type, orientation and size [3]. Specifi-
cally, numerical simulations of wave propagation play a key role for
the development of novel damage detection algorithms and are useful
to support the interpretation of experimental measurements [5–7].
A concise yet meaningful understanding of these phenomena is often
obtained by means of scattering diagrams illustrating the directivity
of the wavefield scattered by defects [8–10]. Such simulations are
computationally intensive, not only due to the scale difference
between the global and local features, but also because scattering
information requires several parametric studies for defects of different

size and orientation. Consequently, significant effort related to model
preparation and re-meshing is often required [6].

In order to alleviate the computational cost of numerical
simulations, mostly based on finite element (FE) or finite differ-
ence (FD) methods, various techniques have been developed and
applied to study specific aspects of wave-damage interaction [11–13].
For example, global-local methods are based on the idea of coupling
analytical solutions and FE models to compute the far-wavefield
scattered by a localized defect. Applications of global-local techniques
to the problem of wave scattering from cracks and inclusions in
plates can be found in the early works by Koshiba et al. [14], Karim
et al. [15], and Al-Nassar et al. [16]. Also, Moulin et al. [17] proposed a
coupled finite element-normal modes expansion method for the
analysis of Lamb waves generated by integrated transducers in
composite plates. The use of analytical solutions in conjunction with
a discretization approach also constitutes the basis of the Strip
Element Method developed by Liu and Achenbach [18] and applied
by various authors to elastic waves scattering problems [19,20].
Similar developments that employ the boundary integral equation
method (BIEM) and the boundary element method (BEM) have also
been proposed by Galan and Abascal in [21], and Rose et al. [22–24].
These approaches allow to investigate very effectively the problem of
wave scattering from arbitrary imperfections but are often limited by
the scarcity of analytical expressions for complex structural/scatterer
configurations.

Other methods of solution to wave-damage interactions include
purely numerical approaches aimed at minimizing the number
of degrees of freedom (DOFs) explicitly retained in the model.
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For example, a Bridging Scale Method (BSM) [25] is used in [26,27]
to couple a coarse mesh with an overlapping fine scale mesh
defined only over a limited portion of the domain near the scatterer.
The onset of spurious waves at the interface between the two non-
matching grids is avoided by proper bridging conditions which,
however, are difficult to implement and significantly limit the
performance of the method. Another approach based on non-
reflecting boundary conditions has been proposed in [8,9] to
characterize the scattering matrix of general defects. This approach
is highly optimized for scattering calculations but unfortunately it
lacks the flexibility required for general analysis purposes.

In this paper, we propose an alternative technique to model
local heterogeneities based on the geometric multiscale finite
element method (GMsFEM), recently developed by the authors
[28]. The GMsFEM formulates multiscale elements (MSEs) which
can be exploited to model heterogeneities with arbitrarily complex
shapes without resorting to local mesh refinements and without
inducing distortions of the FE discretization in the vicinity of
irregular defects. This is achieved by providing MSEs with multi-
scale shape functions and elemental mass and stiffness matrices
that are computed through a numerical procedure performed
during the pre-processing stage of the simulation. The MSEs are
then assembled along with conventional finite elements, typically
quadrilaterals and hexahedral elements, as part of the global FE
model. Interestingly, the GMsFEM framework can be exploited to
define libraries of multiscale elements with embedded defects
which can significantly reduce the effort related to model pre-
paration and re-meshing required by parametric scattering ana-
lyses conducted with the conventional FEM.

This paper is divided into five sections including the present
introduction. Section 2 provides a brief overview of the major
issues related to FE modeling of irregular defects, and illustrates
how the GMsFEM can be exploited to facilitate wave propagation
analyses. In Section 3 an illustrative example of wave-damage
interactions shows the capabilities of the proposed GMsFEM
approach and validated its results. Section 4 illustrates how the
GMsFEM can facilitate the calculation of the scattering coefficients
of Lamb waves from a three-dimensional plate featuring different
damage configurations. Finally, concluding remarks and future
perspectives are summarized in Section 5.

2. Multiscale damage modeling approach

2.1. Motivation and concept

When FE or FD techniques are employed for wave propagation
simulations, the size of the numerical grid is generally chosen to

spatially resolve the propagation of the waves with the shortest
wavelengths [15,29], as well as the global geometric features of the
object being modeled. When simulating the interaction of propa-
gating waves with small defects, an additional constraint on the
grid size is imposed by the necessity to accurately model the small
scale features of the damaged area [6]. A model that satisfies all of
these requirements can grow very rapidly in size as the character-
istic length of the defect decreases. Consequently, the necessity to
simultaneously resolve both the global and the damage scales
poses outstanding numerical challenges to the current methods of
analysis. Significant end-user intervention is also related to model
preparation and re-meshing when conducting several parametric
studies for defects of different size and orientations (Fig. 1).

In the proposed numerical scheme, the presence of localized
heterogeneous regions in an otherwise uniform domain is discre-
tized using a limited number of multiscale finite elements (MSEs).
Each MSE features an arbitrary number of nodes which are used to
resolve geometrical features or material discontinuities without
inducing localized mesh refinements and distortions. The nodal
displacements of a MSE are interpolated within the element's
domain by means of an auxiliary fine scale mesh [28]. This is
illustrated schematically in Fig. 2 which shows the detail of a
GMsFEM discretization in the vicinity of two defects each discre-
tized by means of a MSE. Fig. 2 also illustrates the auxiliary fine
scale triangulation used within the MSEs to numerically compute
their multiscale shape functions. The DOFs associated with such
local mesh are denoted as fine scale DOFs u. A subset of u is retained
at the coarse scale level and represents the coarse scale DOFs dAu of
the multiscale element that are assembled at the structural level. Of
note is that the fine scale mesh, and the associated local DOFs, is not
retained as part of the macroscopic simulation, but it is only used to
compute the MSE's multiscale shape functions as described in [28].
For completeness, the method for computing the MSE's shape
functions is summarized below.

2.2. Shape functions of multiscale elements

The interpolation functions of each MSE are obtained through a
numerical solution at the local level, and are subsequently used for
the formulation of the MSE's mass and stiffness matrices [28]. The
vector of fine scale DOFs u is partitioned in terms of the coarse
scale DOFs d previously defined, and a subset of local DOFs q that
are not explicitly retained at the macroscopic level. This relation
can be generally expressed as

u¼ ½d; q�T ARnu�1 ð1Þ
where dARnd�1 and qARnq�1, with nd and nq respectively denot-
ing the number of coarse scale DOFs and the number of discarded

Fig. 1. Schematic illustration of a wave scattering analysis. The inserts on the left highlight the mesh distortion induced by local heterogeneities, and the need to re-mesh the
entire domain when considering different types of defect.
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