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a b s t r a c t

The displacement-based finite element method (FEM) has become a method of choice for material
nonlinear analysis of plates. For material nonlinear problems, the displacement-based FEM relies upon a
step-by-step incremental approach and the repetitive computation of the systematic stiffness matrix.
These shortcomings lead to the error accumulation and huge computational consumption, which
encourage the reconsideration of force-based methods for elastoplastic problems. In this paper, a force-
based Large Increment Method (LIM) is employed for the elastoplastic analysis of plates using a force-
based 4-node quadrilateral plate element which is based on Mindlin–Reissner plate theory. The
consistent elastoplastic flexibility matrix of plate element is derived and implemented to solve
elastoplastic plate problems. Two numerical examples are presented to illustrate the mesh convergence
of the plate element by solving the linear elastic thin and moderately thick plate problems by comparing
with the analytical solutions and displacement-based plate elements. Two simple elastoplastic plate
problems are presented to illustrate the accuracy and the computational efficiency of LIM by comparing
with the results from the FEM software ABAQUS.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few decades, the displacement-based finite
element method (FEM) has been proved to be a highly powerful
tool for analyzing a wide variety of physical problems in many
areas of engineering. In these fields, two distinct finite element
methods named the displacement-based FEM and the force-based
FEM have been developed for analyzing very complicated non-
linear problems in structural mechanics and solid mechanics. In
recent decades, the displacement-based FEM has dominated
current practice for the numerical simulations of nonlinear analy-
sis of structures due to its straightforward implementation and
easy computer automation. However, many shortcomings of the
FEM have been observed in the analysis of the material nonlinear
problems and can be summarized as follows: (a) the error
accumulation, which mainly comes from the step-by-step solution
procedure, (b) huge computing time consumption, which is due to
obtain accurate results with many small enough steps and an
iterative algorithm to solve the nonlinear system of equations.
At each step, the linearized constitutive relation may vary from
the previous step, which will lead to a different system stiffness

matrix. Consequently, the different system stiffness matrix has to
be handled again and again during the step-by-step process, and
(c) inaccuracy of stress, the stresses are calculated indirectly using
the differentiation from the displacement, which may cause
numerical errors in stress predictions. These shortcomings lead
to the reconsideration of the force-based approaches for the
material nonlinear problems. It is well known that, the main
unknowns in the traditional force-based method are the redun-
dant forces. However, this approach is not easy to implement in
computer software because there are difficulties in the selection of
the statically determinate structures and constructing the self-
stress matrix, and an improper selection may lead to the program-
ming difficulty and computational instability. A number of novel
schemes have extended the force method for linear and nonlinear
problems [1–5]. The main purpose of these researchers is to
overcome the shortcomings of the traditional force-based method
and the displacement-based FEM. By far, many force-based finite
element methods still have to linearize the constitutive model and
the error accumulation problem is not suppressed in essence.

As a novel iterative displacement-based method, the large time
increment method (LATIN) is proposed for the material nonlinear
problem by Ladevèze [6]. In recent years, the LATIN has been
extended to solve many elastoplastic material [7,8], frictional
contact [9], nonlinear multiscale [10] and parallel computing
problems [11]. In LATIN, the governing equations are divided into
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two groups: the global equilibrium and compatibility equations,
and the local constitutive equations. This method relies on a step-
by-step solution process at the system analysis stage and non-
linear iterative procedure at the local stage using different search
direction. It should firstly assume the material behavior to form
the initial the system stiffness matrix for getting the initial
solution, which can lead to error accumulation. The large incre-
ment method (LIM), which is first proposed by Zhang and Liu [4]
for material nonlinear problem, is a novel iterative force-based
FEM. In LIM, all the independent internal element forces are
adopted as system unknowns and the basic determinate structure
is no needed, so the LIM becomes a systematic method and it is
easy to implement in the computer program. Like the LATIN, the
governing equations of LIM are also divided into two groups: the
global equilibrium and compatibility equations, and the local
constitutive equations. In the case of small deformation, the linear
equilibrium equations and the compatibility equations are treated
in the global stage and are only solved one time, which will lead to
less time consumption. The nonlinear constitutive relation is
treated in the local element stage separately. By separating the
governing equation into two stages, the constitutive model need
not be linearized. Hence the step-by-step solution process is
replaced by an overall iterative procedure, and the error accumu-
lation can be avoided. In other words, the loading process often
can be handled in one large increment for monotonic loading or a
few large increments for cyclic loading. In recent years, LIM has
been extended for solving elastic-perfectly plastic analysis of plane
frame structures under monotonic and cyclic loading and 2D
continuum elastoplastic problems [12–14]. The accuracy and
efficiency of LIM have been proved. For the parallel computing in
the time and spatial domain of LIM, it has great potential for
solving large scale structural problems with significant computa-
tional saving [15].

In this paper, LIM is employed to analyze the elastic and
elastoplastic plate problems using a force-based 4-node quadri-
lateral plate element (PQ2) [16]. Meanwhile, the consistent elas-
toplastic flexibility matrix of plate element is derived and
implemented to solve elastoplastic plate problems. The PQ2
element has no extra spurious energy modes and can avoid shear
locking for solving the thin plate. Two linear elastic plate bending
problems are presented to further illustrate the mesh convergence
and accuracy of the PQ2 element. Two simple elastoplastic plate
problems are presented to study the accuracy and the computa-
tional efficiency of LIM by comparing with the results from the
FEM software ABAQUS. All the numerical results show that the
performance of the LIM is as good as the commercial FEM software
in linear elastic and elastoplastic problems.

The outline of the paper is as follows: In Section 2, the basic
equations of LIM for plate element is presented. The consistent
elastoplastic flexibility matrix is given in Section 3. In Section 4 we
present the basic theory of LIM. Numerical examples are provided
in Section 5 and some conclusions are stated in Section 6.

Only small deformation and small displacement are considered
in this paper.

2. The governing equations of plate element

In LIM, the physical domain of the structure is Ω with boundary S.
The boundary is divided into two parts: the traction boundary Ss and
the displacement boundary Su, where Ss \ Su ¼ 0. The stress resul-
tantM and displacement u at each point in any element can be given
by the element generalized force variables and element nodal
displacement variable, respectively. The stress resultant fields of the

plate element are written as

M ¼ ZFe ð1Þ
whereM is the stress resultant vector of plate element, Z is the shape
function of generalized force parameter vector, and Fe denotes the
elemental generalized force parameters vector.

The displacement fields in element are described by

u¼Nde ð2Þ
and the strain vector in element is given by

ε̂¼ Lu¼ LN de ¼ Bde ð3Þ
where u is the displacement vector, N is the shape function of the
node displacement vector, de denotes the nodal displacement
vector of an element, ε̂ is the strain vector, and L is the differential
operator.

Using the principle of virtual work, one findsZ
Ωe
M Uδε̂dΩ¼

Z
Ωe
bUδudΩþ

Z
Ses

t UδudS ð4Þ

where δε̂, b, δu, t and Ses denote the virtual strain, the body force
vector, the virtual displacement, the traction force vector and the
traction boundary of the element, respectively.

Substituting the Eqs. (1) and (3) into the Eq. (4), the Eq. (4) can
be rewritten as

δdeT
Z
Ωe
BTZdΩ

� �
Fe ¼ δdeT

Z
Ωe
NTbdΩþ

Z
Ses

NTtdS

 !
ð5Þ

and the element equilibrium equations can be expressed as

CeFe ¼ Pe ð6Þ
where

Ce ¼ RΩeBTZdΩ

Pe ¼ RΩeNTbdΩþRSesNTtdS

8<
: ð7Þ

In Eq. (7), Ce is the element equilibrium matrix, Pe is the
element equivalent nodal force vector.

The equilibrium equations of the system which are obtained by
assembling the element equilibrium equations are given as

CF ¼ P ð8Þ
where C is an m� n equilibrium matrix of the structure, and it is
assembled from the element equilibrium matrix. For the statically
indeterminate structures, the system equilibrium matrix C is an
m� n non-square matrix with mon. F is an n� 1 generalized
inner force vector of the structure, and P is an m� 1 node load
vector.

Similarly, using the principle of complementary virtual work,
one findsZ
Ωe
δMT ðε̂�BdÞdΩ¼ 0 ð9Þ

Substituting Eqs. (1) and (3) into Eq. (9), the assembled
compatibility equations of the system can be expressed as

CTD¼ δ ð10Þ
where D is the nodal displacement vector of the structure and δ is
the generalized deformation vector of the structure.

Then, the element constitutive equation can be written as

δe ¼ΦeðFe; κÞ ð11Þ
where

δe ¼ RΩeZT ε̂dΩ

ΦeðFe; κÞ ¼ RΩeZTϕðM; κÞZdΩ

8<
: ð12Þ
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