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and then, allows the definition of extrinsic cohesive zone. The proposed element is tested in a simple
mechanical configuration, and the influence of several parameters is focused on. Formulation limitations
are last explained.
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1. Introduction

A commonly used method to allow cracks to appear and to
propagate in finite element models is based on the cohesive zone
approach. Since their first development by Dugdale [1] and
Barrenblat [2], various formulations have been proposed, based
on inverse identification (depending on the studied problem) or
thanks to atomic theoretical considerations.

Cohesive finite elements are interfacial ones, which are inserted
between two classical FE; their mechanical behavior (Traction-
Separation Law, or TSL) models the progressive damage of the
interface, from undamaged state up to total failure.

Cohesive zone elements might be implemented in various com-
mercial Finite Element (FE) codes thanks to user subroutines, or are
even included as standard procedures. Accounting for potential
convergence problems [3], the failure of numerical structures is then
possible.

The use of these elements, however, induces several arti-
facts, directly linked to the pre-debonding part of the TSL, which
corresponds to a - very tough - spring-like interfacial element: while
inserted in a mesh, cohesive elements lead to a global deterioration of
the Finite Element structure mechanical properties [4,5]. For certain
configurations, where a crack path is not a priori supposed, numerical
failure might also exhibit a mesh-dependency [6].

To avoid such problems, several strategies might be used. One
of them is based on the use of extrinsic cohesive elements, for
which the undamaged interface cannot open, whatever the inter-
facial stress [7,8]. The extrinsic TSL, however, is not an application,
and the implementation of such an element in Finite Element
programs is highly problematic, being dependent on the way the
mechanical solution is computed by the FE program [9]. Extrinsic
behavior can nevertheless be defined thanks to an implicit pre-
debonding TSL definition, based on the use of the Discontinuous
Galerkin (DG) method.

The discontinuous Galerkin Method has been introduced by
Reed [10] in 1973 to solve transport problems, and to get solutions
in which potential discontinuities do not create artificial oscilla-
tions. The DG method has then been extensively used for a
large game of problems (see [11] for a review). Because the DG
method deals with unknown fields discontinuities, it is well
adapted to crack initiation problems, in which a crack path is
defined in a solid which remains undamaged up to a critical stress
value. Across this potential discontinuity surface, the unknown
displacement field has to remain continuous until the onset of
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failure. This method has then been developed for crack initiation
and propagation problems [12] and applied to various configura-
tions [13-19].

Because of its formulation and its implicit properties, the
integration of such a method in commercial programs is not easy
due to the available data which are transferred to user subroutines,
and its implementation is mainly performed in home-made FE
codes or open sources ones (e.g., [20]). We aim in the present
paper at proposing a finite element formulation which allows the
DG method implementation in FE commercial programs, avoiding
the problem due to the implicit pre-debonding TSL formulation.
Such an element consequently allows the definition of perfect
interfaces. This element was implemented in Abaqus, using a User
ELement subroutine (UEL).

The DG method is first presented, and, based on a simple 1D
analytical problem, the finite element configuration is derived. The
interfacial pre-debonding TSL is then focused, and especially, the
influence of mechanical parameters. Last, formulation limitations
are pointed out. Vectors will be denoted thanks to bold letters,
while italic letters are associated to scalar variables. Tensors will
be written as [X] or X, depending on the context. “:” denotes

double tensorial contraction, and “.” simple contraction.

2. Resolution of a cracked body problem: the discontinuous
Galerkin method
2.1. General mechanical problem
Let us consider an elastic body £, whose boundary 0f2 is
partitioned in two 0£2=0£2, U 0€2r. This body is submitted to
both imposed displacement @ and stress T on £, and 0Q;
respectively (Fig. 1).

If u denotes the (unknown) displacement at each body material
points, the strain tensor € being so that

e:%(Vu+TVu), o))
where V is the Nabla operator. The stress field ¢ is then deduced
from the strain one through the material behavior (e.g., for an
elastic body, 6 =C : €, C being the elasticity tensor).
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Fig. 1. Presentation of the problem.
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