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a b s t r a c t

The objective of this work is to obtain an a posteriori estimate of the discretization error of a reference
problem. This reference problem is a mechanical problem solved using a finite element analysis in linear
elasticity. We use the constitutive relation error based estimator. The construction of admissible fields,
which is a pillar of the constitutive relation error method, is revisited using a domain decomposition
method.

The originality of the present work is the introduction of a simplifying hypothesis that leads to an
approximation of the discretization error. The construction of admissible fields, which is global, is then
replaced by resolution of several local problems that conduce to lower CPU costs. The key point of this
domain decomposition based error estimation is the fact that no inter-subdomain communication is
needed. We present and illustrate this strategy and evaluate its benefits.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the field of mechanical engineering, numerical simulation
has become an indispensable tool to predict the response of a
structure to various solicitations. These numerical simulations
involve the use of a discretized version of an initially continuous
mathematical model (finite element analysis) that leads only to an
approximation of the exact solution of the reference problem. In
industrial situations, the Finite Element (FE) simulations have to
satisfy both requirements of quality and CPU cost. On one side,
quality requirement of the simulation, which is the purpose of
verification consists in evaluating the distance between the exact
solution and an approximated solution of the problem. A state-of-
the-art review on verification can be found in [13,1]. On the other
side recent development of parallel computers brought the fore-
ground new simulations methods to achieve better CPU Cost. In
particular, Domain Decomposition Method (DDM) is a more and
more used strategy to take advantage of multicore processors or
multiprocessor systems.

In Parret-Fréaud et al. [19], the proposed error estimator is
strongly linked to the domain decomposition finite element based
simulation, and is used to control the simulation. In this work, a
new domain decomposition technique is introduced to compute

the Finite Element analysis error, which takes a different path by
defining totally independent calculations on each sub-domains.
The main interest is a gain on CPU costs, the main drawbacks are a
degraded error estimation, and thus a small quality loss. Note that
the origin of the Finite Element solution can be varied. In
particular, whether the finite element analysis can be performed
elements using a domain decomposition method or not, the
method developed here applies.

The objective of this paper is to illustrate that the quality loss is
widely acceptable in a practical use. Section 2 reviews the
equations of the reference problem and associated discretization
and Section 3 reviews the constitutive relation error method and a
technique for building admissible fields. Recovery of the admis-
sible stress using a domain decomposition approach is introduced
in Section 4. Sections 4 and 5 present some results obtained using
these techniques.

2. Reference problem and its discretization

2.1. The reference problem

Let us consider a linear elastic static problem under the
assumption of small transformations. The structure is defined in
a domain Ω bounded by ∂Ω. The structure is submitted to a
prescribed displacement ud over a part ∂1Ω of the boundary ∂Ω,
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a prescribed volume force f
d
within Ω and a prescribed surface

force density Fd over ∂2Ω¼ ∂Ω�∂1Ω.
Hence the reference problem: find the displacement field uðMÞ

and the stress field sðMÞ, defined at all points M of domain Ω,
which satisfies

� the kinematic admissibility equations:

uAU ; u ¼ ud on ∂1Ω ð1Þ

� the static admissibility equations:

sAS; s � n ¼ Fd on ∂2Ω ð2Þ

sAS; divðsÞþ f
d
¼ 0 on Ω ð3Þ

� and the constitutive relation:
s¼KϵðuÞ on Ω ð4Þ

where U is the set of the fields u which are regular, and S is the set
of the fields s which are symmetrical and regular (i.e. with finite
energy). ϵðuÞ represents the linearized strain tensor: ϵðuÞ ¼
1=2ðgradðuÞþgradðuÞtÞ. Hooke's tensor is denoted K. Now let
Uad;0 be the space of the fields which are kinematically admissible
to zero:

Uad;0 ¼ fujuAU; uj∂1Ω ¼ 0g ð5Þ
and Sad;0 the space of the fields which are statically admissible to
zero:

Sad;0 ¼ fsjsAS; divðsÞ ¼ 0; sj∂2Ω � n ¼ 0g ð6Þ

2.2. The discretized problem

In practice, the exact solution of the reference problem
ðuex;sexÞ is often unknown. Therefore, one calculates an approx-
imate solution by introducing a discretized problem based on a
weak formulation of the model's equations. This leads to an
approximated pair ðuh;shÞ which is the solution of the discretized
problem. This solution is defined from a set of approximate
displacements Uh � U .

Thus, the finite element problem consists in seeking the pair
(uh;sh) which satisfies

� the kinematic admissible equations:

uhAUh; uhj∂1Ω ¼ ud; ð7Þ

� the equilibrium equation:

shAS;
Z
Ω
Tr½sh � ϵðun

hÞ� dΩ¼
Z
Ω
f
d
� un

h dΩþ
Z
∂2Ω

F d

� un

h dΩ; 8un

hAUad;0 \ Uh; ð8Þ

� and the constitutive relation:

sh ¼KϵðuhÞ: ð9Þ

3. Error in constitutive relation and associated admissible
construction

3.1. The error in constitutive relation

The difference between the solution of the finite element
problem (uh;sh) and the exact solution of the mathematical

problem (uex;sex) is called the discretization error. This error is
due mainly to the approximation concerning the equilibrium
equations, the spatial discretization of the geometry or the
approximation concerning the loading.

For the purpose of dimensioning the structure, it is important
to quantify that error and, if possible, to obtain an upper bound.
A global measure of the error is defined by

e¼ Jsex�sh JK� 1 ;Ω; ð10Þ

where sex is the stress field which is the exact solution of the
reference problem and sh is the approximated stress field
obtained using the finite element method. The energy norm is
based on Hooke's tensor K on Ω:

J�J2K� 1 ;Ω ¼ ð�; �ÞK� 1 ;Ω ¼
Z
Ω
Tr½�K�1�� dΩ: ð11Þ

To estimate e, we use an error estimator based on the constitutive
relation error (CRE), see Ladevèze and Pelle [13]. A measure of the
non-verification of the constitutive relation by an admissible pair
ðû ; ŝÞ is introduced:

e2CREðû ; ŝÞ ¼ J ŝ�Kϵðû Þj2
K� 1 ;Ω: ð12Þ

A pair ðû ; ŝÞ is said to be admissible if û satisfies Eq. (1) and if ŝ
satisfies Eqs. (2) and (3). Since field uh satisfies Eq. (7), it
necessarily satisfies Eq. (1); therefore, one generally chooses
û ¼ uh. The construction of field ŝ is reviewed in Section 3.2.
The error in constitutive relation satisfies the Prager Synge relation
Prager and Synge [21] which leads to the following upper bound:

ereCRE : ð13Þ
This upper bound of the global error can be used to obtain bounds
of the local quantities thanks to the introduction of a dual
problem, see Becker and Rannacher [3]. The contributions of this
error can also be used to perform an adaptative mesh refinement,
see Florentin et al. [5].

3.2. Construction of the statically admissible stress field

While the admissible displacement field construction is
straight forward, the construction of ŝ requires a specific recovery
step based on the finite element solution sh and the data of the
reference problem. Different paths can be used see e.g.
[18,19,16,9]. The construction we use here consists of two steps:

� Construction of nodal densities F̂ h
The nodal densities F̂ h are defined along the edge Γ belonging
to ∂E, the set of the edges of each element. These densities are
calculated to be in equilibrium with the problem's boundary
conditions, i.e. they satisfy:

F̂ h ¼ F d on ∂2Ω ð14Þ
Z
E
f
d
� U n

hdEþ
Z
∂E
ηΓE F̂ h

� U n

h dΓ ¼ 0; 8U n

h solid body motion of E: ð15Þ
In order to guarantee the continuity of the loads along edge Γ
associated to E, we have introduced ηΓE ¼ 71, with ηΓEi �
ηΓEj ¼ �1 for two adjacent elements Ei and Ej, see Ladevèze
and Pelle [13] for more details. Field F̂ h can be built in several
ways. For this work, we chose what is called the “optimal
method”, which consist in a global minimization problem
defined on Ω, see [6] for more details.

� Construction of ŝ from F̂ h
Once field F̂ h has been calculated, the field of the admissible
stresses is built element by element. Analytical methods can be
used, see Ladevèze and Pelle [13]. One can also use a numerical
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