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a b s t r a c t

The scaled boundary method is a semi-analytical method of analysis which can be used in computa-

tional mechanics. This method uses a normalised radial coordinate system, introducing shape functions

to weaken the governing equations in the circumferential direction and solving the resulting

differential equations analytically in the radial direction. This paper presents a new Element-free

Galerkin (EFG) scaled boundary method in which the EFG approach is used in the circumferential

direction. The proposed model is verified by application to a number of standard problems of elasticity.

The numerical solutions show that the new method has higher accuracy (for any particular number of

nodes) and better convergence than scaled boundary finite element methods, and an accurate smooth

stress field can be obtained directly without the necessity of using a stress recovery procedure.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The scaled boundary method is a semi-analytical method
developed relatively recently by Wolf and Song [1]. The method
introduces a normalised radial coordinate system based on a
scaling centre and a defining curve (usually taken as the bound-
ary). The governing deferential equations are weakened in the
circumferential direction and then solved analytically in the
normalised radial direction. Like the boundary element method,
discretisation of the boundary only is required, but unlike that
method no fundamental solution is required. The method has
been shown to be more efficient than the finite element method
for problems involving unbounded domains and for problems
involving stress singularities or discontinuities [2]. Especially,
fruitful applications of this method have been achieved for
fracture problems [3–6] and foundation problems [7–10].

In the scaled boundary method, the discretisation approach
used in the circumferential direction has significant influence on
the accuracy of the resulting solutions [11]. The most commonly
used method for performing this circumferential discretisation is
the finite element approach, leading to the method called the
scaled boundary finite element method (SBFEM) [12–16]. How-
ever, like the finite element method, this approach results in the
computed stress field being discontinuous between nodes, and
necessitates use of stress recovery procedures, such as those
reported by Deeks and Wolf [2]. The development of meshless
methods provided another approach to build circumferential

approximations for the scaled boundary method. Deeks and
Augarde [11] presented a meshless version of the scaled boundary
method based on a Meshless Local Petrov–Galerkin approach.
They showed that the MLPG scaled boundary method gave a
higher level of accuracy and rate of convergence than the
conventional SBFEM using quadratic elements. However, as bell-
shaped weight functions are used for the test functions, the
approach results in a more complex formulation of the scaled
boundary equations leading to an unsymmetrical stiffness matrix.
In addition, the authors experience with the MLPG scaled bound-
ary method has shown that the method is not robust in
certain situations, due to the bell-shaped weight functions not
summing to unity everywhere in the domain. This causes the
error in certain parts of the domain to be over-weighted, and the
error in other parts of the domain to be under-weighted, some-
times leading to sub-optimal solutions.

The original EFG method was developed by Belytschko et al.
[17]. This method is only based on nodes, and thus no mesh
generation or remeshing is required. It has been shown that,
compared with the finite element method, the EFG method has
the advantages of high accuracy, rapid convergence, and a smooth
stress solution can be obtained without post-processing [17].
To the authors’ knowledge, there has been no work done which
combines the EFG method and the scaled boundary method.

Therefore it is attractive to establish a new Element-free
Galerkin scaled boundary method (EFG–SBM) combining EFG
and scaled boundary method, in which the Moving Least Square
(MLS) shape functions are used in the circumferential direction
of the scaled boundary model based on the Galerkin approach.
The incorporation of the EFG approach into the scaled boundary
method combines the advantages of scaled boundary method and
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EFG method in a new EFG–SBM. This new numerical model has
the advantages that

(1) Discretisation is only required in the circumferential direc-
tion, so the number of degrees of freedom (DOF) required to
solve a problem is significantly reduced compared with the
conventional EFG method in a 2D domain, but, unlike the
conventional boundary element method, no the fundamental
solution is required and no integrals containing singularities
need be performed.

(2) The EFG–SBM provides a new approach to establishing a
meshless boundary method. Other meshless boundary meth-
ods described in the literature are mainly based on Boundary
Integral Equations (BIE), including the Local Boundary Integral
Equation (LBIE) method [18], the Boundary Element-free
Method (BEFM) [19–21], and the Boundary Node Method
(BNM) [22]. Compared with these BIE based meshless meth-
ods, the EFG–SBM does not use the BIE approach, and so no
fundamental solution is required.

(3) The solutions are C1 continuous over the domain, and so
smooth stress fields can be obtained without post-processing,
and the advantages of accuracy, smoothness and convergence
of original EFG can be retained.

(4) Like the original SBFEM, this meshless version of the scaled
boundary model is also suitable for solving problems invol-
ving unbounded domains and stress singularities or disconti-
nuities very efficiently.

(5) In comparison to the MLPG scaled boundary method, the EFG
approach yields a symmetric stiffness matrix and a more
robust solution, since in the MLPG approach the weighing
functions do not comply with a partition of unity approach,
while in the EFG approach they do.

(6) Since the symmetry of original scaled boundary method is
retained, the method can be combined with domains mod-
elled with the finite element method or the EFG method much
more conveniently than with the MLPG scaled boundary
method.

This paper is organised as follows: The basic equations of
scaled boundary method are given in the next section. Section 3
introduces an EFG approach for scaled boundary methods. Some
example problems are presented in Section 4 to verify the
effectiveness of proposed method, and the paper draws some
conclusions at the end. Since the computational advantage of the
SBFEM over the finite element method for problems involving
stress singularities, stress discontinuities and unbounded
domains has been demonstrated previously [2], this paper only
compares the performance of this EFG–SBM method with the
existing SBFEM and the MLPG scaled boundary method.

2. The scaled boundary method

The scaled boundary method introduces a normalised radial
coordinate system by scaling the domain boundary relative to a
scaling centre ðx0,y0Þ selected within the domain (Fig. 1). The
normalised radial coordinate x runs from the scaling centre
towards the boundary, and has values of zero at the scaling
centre and unity at the boundary, which can be considered as the
defining curve for the coordinate system. The other circumfer-
ential coordinate s specifies a distance around the boundary from
an origin on the boundary. The scaled boundary and Cartesian
coordinate systems are related by the scaling equations

x¼ x0þxxsðsÞ ð1Þ

y¼ y0þxysðsÞ ð2Þ

Displacement and stress components are retained in the
original Cartesian coordinate directions, while position is speci-
fied in terms of the scaled boundary coordinates. An approximate
solution is sought in the form

uhðx,sÞ
� �

¼
Xn

i ¼ 1

½NiðsÞ�uhiðxÞ ¼ ½NðsÞ� uhðxÞ
� �

ð3Þ

This represents a discretisation of the boundary x¼ 1 with the
shape function ½NðsÞ�. The unknown vector uhðxÞ

� �
is a set of n

functions analytical in x. The shape functions apply for all lines
with a constant x.

Mapping the linear operator to the scaled boundary coordinate
system using standard methods

L½ � ¼ L1
h i @

@x
þ L2
h i @

@y
¼ b1

ðsÞ
h i @

@x
þ

1

x
b2
ðsÞ

h i @
@s

ð4Þ

where ½b1
ðsÞ� and ½b2

ðsÞ� are dependent only on the boundary
definition.

The stresses are obtained by multiplying the strains (obtained
form the displacement field using the linear operator) by the
elasticity matrix ½D� in the form

sðx,sÞ
� �

¼ D½ � eðx,sÞ
� �

¼ D½ � B1
ðsÞ

h i
uðxÞ
� �

,xþ
1

x
D½ � B2

ðsÞ
h i

uhðxÞ
� �

ð5Þ

where

½B1
ðsÞ� ¼ ½b1

ðsÞ�½NðsÞ� ð6Þ

½B2
ðsÞ� ¼ ½b2

ðsÞ�½NðsÞ�,s ð7Þ

In this case the virtual work statement becomesZ
V

deðx,sÞ
� �T shðx,sÞ

� �
dV�

Z
S

duðsÞ
� �T

tðsÞ
� �

ds¼ 0 ð8Þ

where the first term represents the internal work and the second
term the external work, and tðsÞ

� �
is the external force vector.

The virtual strain field is of the form (analogous to Eq. (5))

deðx,sÞ
� �

¼ B1
ðsÞ

h i
duðxÞ
� �

,xþ
1

x
B2
ðsÞ

h i
duðxÞ
� �

ð9Þ

where duðxÞ
� �

is virtual displacement and

dV ¼ 9J9xdxds ð10Þ

where 9J9 is the Jacobian at the boundary (x¼ 1).
Substituting Eqs. (5), (9) and (10), integrating the area inte-

grals containing duðxÞ
� �

,x with respect to x using Green’s Theo-
rem, and introducing the coefficient matrices

½E0
� ¼

Z
S
½B1
ðsÞ�T ½D�½B1

ðsÞ�9J9ds ð11Þ

Fig. 1. Bounded domain with side faces showing scaled boundary coordinate

system.
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