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Because of future promising exploration of nanotechnology, focus is being put in the miniaturization of

mechanical and electromechanical devices. Attention is sought toward the development of nanodevices

and nanomachines. The length scales associated with nanostructures like are such that to apply any

classical continuum techniques, we need to consider the small length scales such as lattice spacing

between individual atoms, surface properties, grain size, etc. This makes a physically consistent

classical continuum model formulation very challenging. So this work presents Eringen’s nonlocal

elasticity theory, that has been incorporated into classical torsional rod model to capture unique

properties of the nanorods under the umbrella of continuum mechanics theory. The strong effect of the

nonlocal scale has been obtained which leads to substantially different torsional wave behaviors of

nanorods from those of macroscopic rods. Nonlocal torsional rod model is developed for nanorods.

Explicit expressions are derived for torsional wavenumbers and wave speeds of nanorods. The analysis

shows that the wave characteristics are highly over estimated by the classical rod model, which ignores

the effect of small-length scale. The studies also shows that the nonlocal scale parameter introduces

certain band gap region in torsional wave mode where no wave propagation occurs. This is manifested

in the spectrum cures as the region where the wavenumber tends to infinite or wave speed tends to

zero. Next, the Spectral Finite Element formulation of nanorods is performed. The exact frequency

dependent shape functions and the dynamic stiffness matrix for the nanorod are obtained as a function

of nonlocal scale parameter. It has been found that the nonlocal small scale has significant effect on the

exact shape functions and the elements of the dynamic stiffness matrix. These effects are also captured

in the present work. The results presented in this paper can provide useful guidance for the study and

design of the next generation of nanodevices that make use of the wave dispersion properties of carbon

nanotubes.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Nanomaterials [1,2] are the base material of many nanoscale
objects. Nanoscale objects are referred to as nanostructures. Recently
various one-dimensional nanostructures have been realized. They
include nanodots, nanorods, nanowires, nanobelts, nanotubes, nano-
bridges and nanonails, nanowalls, nanohelices, seamless nanorings.
Among all the one-dimensional nanostructures, nanotubes, nanorods
and nanowires are widely studied. This is because of the easy
material formation and device applications. One-dimensional nanos-
tructures (here nanorods) have stimulated a great deal of interest due
to their importance in fundamental scientific research and potential
technological applications in nano-electronic, nano-opto-electronic

and nano-electro-mechanical systems. Rod-shaped viruses, such as
tobacco mosaic viruses and M13 bacteriophage, have been utilized as
biological templates in the synthesis of semiconductor and metallic
nanowires [3]. They were also proposed as elements in the biologi-
cally inspired nanoelectronic circuits. Vibrational modes will affect
the properties of the inorganic–organic interface. As stated by
Fonoberov and Balandin [3], pure axial vibration mode can also be
observed. Axial vibration experiments can also be used to determine
elastic properties of carbon nanotube. Although flexural experiments
are used when determining Young’s modulus axial vibrations can
also be used. Nanorods can be used for microelectromechanical and
nanoelectromechanical devices. During these applications axial
external forces may act with nanorods and this leads to axial
vibration of them. Due to this fact, understanding their axial dynamic
behavior is very important task. The excellent properties of these
nanomaterials have led to its multiple usages in the field of
nanoelectronics, nanodevices, nanosensors, nanooscillators, nano-
actuators, nanobearings, and micromechanical resonators,
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transporter of drugs, hydrogen storage, electrical batteries, nanocom-
posites and nano-opto-mechanical systems (NOMS). However, for
further effective potential applications of these nanostructures,
proper physical, chemical and mechanical understanding of the
nanomaterials is essential.

Conducting experiments are appropriate ways to analyze the
behavior of the nanostructures. However it suffers from the draw-
back that controlling every parameter in nanoscale is a difficult
task. Further employing the molecular dynamic (MD) simulations
requires large time and high computational resources. Because of
the above-mentioned limitations in the mechanical analyses of
nanostructures, theoretical and mathematical modeling becomes
an important issue concerning its nanoengineering applications.
Continuum models of nanostructures have thus received more
attention. Various reports related to the use of continuum theories
in the vibration and buckling analysis of nanostructures could be
found in the literature [4–6]. However though this continuum
models could provide quick and approximate predictions, it fails to
account for the size/scale effects. At nanometer scales, size effects
often become prominent. Both experimental [7,8] and atomistic
simulation results [9] have shown a significant scale/size-effect in
mechanical properties when the dimensions of these structures
become small. As the length scales are reduced, the influences of
long-range inter-atomic and intermolecular cohesive forces on the
static, dynamic and buckling properties tend to be significant and
cannot be neglected. The classical theory of elasticity being the
long wave limit of the atomic theory excludes these effects. The
traditional classical continuum mechanics would fail to capture the
small scale effects when dealing in nanostructures. The continuum
theories which would reflect the size-dependency are therefore
necessary for true prediction of the behavior of nanostructures.
Various size-dependent continuum theories which capture this
small-scale effect are therefore reported. Some theories include
couple stress elasticity theory [10], strain gradient theory [11] and
modified couple stress theory [12].

So, the length scales associated with nanostructures like
carbon nanotubes, nanofibers, nanowires, nanorods, graphene
sheets are such that to apply any classical continuum techniques,
we need to consider the small length scales such as lattice spacing
between individual atoms, surface properties, grain size. This
makes a physically consistent classical continuum model formu-
lation very challenging. In the present work the size-dependent
continuum theory known as the nonlocal elasticity theory is
considered. The nonlocal elasticity theory was first reported by
Eringen. Nonlocal continuum field theories are concerned with
the physics of material bodies whose behavior at a material point
is influenced by the state of all points in the body. Eringen’s
nonlocal elasticity theory [13–16] is a useful tool in treating
phenomena whose origins lie in the regimes smaller than the
classical continuum models. In this theory, the internal size or
scale could be represented in the constitutive equations simply as
material parameters. Such a nonlocal continuum mechanics has
been widely accepted and has been applied to many problems
including wave propagation, dislocation, crack problems, etc. [16].
Recently, there has been great interest in the application
of nonlocal continuum mechanics for modeling and analysis of
nanostructures. Using nonlocal elasticity theory, works on vibra-
tion, bending and buckling of carbon nanotubes are numerous
[17–28].

Application of the finite element method (FEM) [29] for wave
propagation requires a very fine mesh to capture the mass
distribution accurately. The mesh size should be comparable to
the wavelengths, which are very small at high frequencies. Hence,
the problem size increases enormously. Many applications in
smart structure applications, such as structural health monitoring
or active wave control in composite structures, require wave-

based modeling since one has to use high-frequency interrogating
signals. If one needs online diagnostic tools in structures, wave-
based modeling is an absolute must. For such problems, the FEM
by itself cannot be used as a modeling tool as it is very expensive
from the computational viewpoint. Hence, one needs an alternate
formulation wherein the frequency content of the exciting signal
is not an issue. That is, we need a modeling tool that can give a
smaller problem size for high-frequency loading, at the same time
retaining the matrix structure of the FEM. Such a technique is
feasible through the spectral finite element (SFEM) technique
[30–32].

It is not enough to have the expressions of the wavenumbers
or phase speeds with matched dispersion relation. To visualize
the manifestation of these speeds it is necessary to develop a tool
for analyzing the nonlocal media subjected to high frequency
loading. The convolution integral form of the nonlocal theory of
elasticity naturally suggests that integral transform based method
of solving partial differential equation will enjoy superiority as
compared to the conventional FEM. One such method is the SFEM.
The SFEM, popularized by Doyle [30], is an integral transform
based method with the matrix structure of FEM. The SFEM is the
FEM formulated in the frequency domain and wavenumber space.
That is, these elements will have interpolating functions that are
complex exponentials or Bessel functions. These interpolating
functions are also functions of the wavenumbers. For example, a
governing partial one-dimensional wave equation, when trans-
formed into the frequency domain using discrete Fourier trans-
formation (DFT), removes the time derivative and reduces the
governing partial differential equation (PDE) to a set of ordinary
differential equations (ODEs), which have complex exponentials
as solutions. In the SFEM, we use these exact solutions as the
interpolating functions. As a result, the mass is distributed exactly
and hence, one single element is sufficient between any two
discontinuities to get an exact response, irrespective of the
frequency content of the exciting pulse. That is, one SFEM can
replace hundreds of FEMs normally required for wavepropagation
analysis. Hence, the SFEM is an ideal candidate for developing
online health monitoring software.

Spectral elements use a variation of p-type convergence. Spec-
tral elements base the element interpolation functions on the
eigenfunctions of the differential equation used to represent the
dominant mechanics in the problem. This results in the ‘‘exact’’
form of the displacement field for the interpolation function. The
interpolation functions of spectral elements are based on trigono-
metric functions, opposed to polynomial functions of conventional
elements. The trigonometric functions incorporate the frequency of
the response into the interpolation function. Having the interpola-
tion function based on the eigenfunction means that a single
spectral element will give the ‘‘exact’’ dynamic solution across
the element for simple loading and boundary conditions. Even for
dynamic analysis, it is only necessary to converge the geometry,
loads, and boundary conditions. It is not necessary to converge the
dynamics, as it is for the case with traditional finite elements. This
results in a reduced number of elements, and thus a reduced model
size for a spectral element model as compared to the conventional
finite element model.

The formulation of various spectral elements for one-
dimensional isotropic waveguides is given in Doyle [30]. Spectral
elements for one-dimensional elementary and first-order shear
deformable composite waveguides are given in Roy Mahapatra
and Gopalakrishnan [33] and Roy Mahapatra et al. [34]. Spectral
elements are also available for composite tubes [35] and func-
tionally graded beams [36]. Spectrally formulated elements are
also available for two-dimensional isotropic membrane wave-
guides [37] and composite waveguides [38]. In all of these works,
the exact solutions to the governing equations are used as the
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