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a b s t r a c t

In structural reliability analysis, the response surface method is widely used to reduce the computa-

tional efforts of engineering analyses. However, in order to reduce the number of finite element analysis

and ensure the accuracy of evaluation, the locations of experimental points used to form a response

surface function must be selected in a judicious way. Therefore, in this study, the control point of

experimental points is constructed. The new center point of experimental points is chosen by using the

control point instead of the design point. The control point can guarantee that the center point of

experimental points lies exactly on the failure surface and is close to the actual design point.

Two improved methods are proposed based on the control point and the moving technique of

experimental points considering the compromise between the accuracy and the efficiency. Five examples

are given to demonstrate the efficiency and the accuracy of the proposed method for both structural

reliability and reliability-based structural optimization.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In structural reliability analysis, the failure probability Pf is
defined as [1]:

Pf ¼

Z
GðXÞo0

f XðXÞdX ð1Þ

where fX(X) is the joint probability density function of the vector
of basic random variables X¼[x1,x2,y,xn]T, which represents
uncertain quantities such as material properties, loads, boundary
conditions and geometry. G(X) is the limit state function (LSF),
G(X)40 represents the safety domain, G(X)o0 represents the
failure domain.

However, the failure probability of a given problem by means
of Eq. (1) is not a straightforward task because the joint prob-
ability density function fX(X) is not always available. In some
cases, Eq. (1) cannot also be integrated analytically even if the
fX(X) is available, especially for the larger and complex structures
with low failure probabilities and implicit LSFs. Therefore, in
order to avoid such calculation, methods such as the first order
reliability method (FORM), the second order reliability method

(SORM) and Monte Carlo simulation (MCS) were proposed [2–5].
Although MCS can give the exact solution, it is time-consuming
for the larger and complex structures. FORM and SORM are also
difficult when the actual implicit LSF usually cannot be easily
expressed explicitly. In some cases, FORM and SORM may suffer
convergence problems [6]. In order to reduce the computational
efforts, the response surface method (RSM) was proposed as
a collection of statistical and mathematical techniques [7,8].
The basic idea of classical RSM is to approximate an implicit LSF
by an equivalent polynomial function.

Several researchers proposed improvements of the classical RSM
in order to evaluate efficiently the failure probability of complex
structures. Bucher and Bourgund [9] proposed a quadratic poly-
nomial response surface without cross terms. The response surface
represents the LSF along the coordinate axes of the space of standard
normal random variables. Rajashekhar and Ellinwood [10] proposed
some ideas to improve the response surface obtained from Bucher’s
algorithm, in which more iterations are repeated until the conver-
gence parameter becomes very small or zero. Kim and Na [11]
proposed to arrange the experimental points in order to bring them
close to the original LSF by using the gradient projection technique.
Gayton [12] proposed a RSM named CQ2RS (Complete Quadratic
Response Surface with ReSampling). The method takes into account
the knowledge of the engineer, the statistical resampling technique
is used to determine the design point. Wong et al. [13] suggested to
choose a 2nþ1 axial point design and to select the parameter f as a
decreasing function of the coefficient of variation of the random
variables. Kaymaz and Chris [14] proposed a new response surface
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called ADAPRES (a short form of adaptive response surface method),
in which a weighted regression method is applied in place of the
normal regression. Duprat and Sellier [15] suggested that points
efficiently positioned with respect to the design point are reused in
the new iteration of the experimental design. Gavin and Yau [16]
presented the use of higher order polynomials for response surface
approximations. The authors proposed to use a polynomial without
a fixed degree in order to fit better the LSF under investigation.
Nguyen et al. [17] proposed an adaptive RSM based on a double
weighted regression technique. For the first iteration, a linear
response surface is chosen, for the following iterations, a quadratic
response surface with cross terms is considered according to
complementary points. Kang et al. [18] proposed an efficient RSM
applying a moving least squares approximation instead of the
traditional least squares approximation. Allaix and Carbone [19]
discussed the locations of the experimental points used to evaluate
parameters of the response surface. The locations of the experi-
mental points are chosen according to the importance sensitivity of
each random variable. At each iteration, the response surface is built
after rotating the coordinate system. The accuracy of this method is
very good in terms of the failure probability, even if a quadratic
response surface with cross terms is used and the reliability index is
considered as the convergence criterion.

As seen from above short literature review, most RSMs utilize an
iterative approach to form the final response surface function (RSF).
Thus, it is very important to find a good estimate for the design
point at the first iteration for these methods since the experimental
points generated in subsequent iterations are based on the result of
the first iteration. If the experimental points are far from the actual
design point at the first iteration, the computational efforts will
be increased. In addition, the definition of a LSF is very important
in reliability-based structural optimization. Since objective or
constraint functions in structural analysis cannot be expressed
explicitly, the sensitivity analysis must be approximately performed.
It is well known that the sensitivity analysis is complicated and its
computational efforts are very expensive. If the RSM is used, the
sensitivity analysis will become very convenient since the partial
derivatives of the functions with respect to random variables can be
obtained by explicit functions. However, the classical RSM needs
many experimental points to generate an approximate function.

In the paper, in order to reduce the computational efforts, the
control point of experimental points is constructed. Two
improved RSMs are proposed based on the control point. Since
the reliability index is often used, the proposed RSM 1 focuses on
the estimation of the reliability index and the design point to
reduce the number of LSF evaluations. However, the method
might cause some approximation error in terms of the failure
probability especially for highly non-linear LSFs. Thus, in order to
improve the accuracy of the estimation of the failure probability,
the improved RSM 2 is proposed based on the results of the
proposed RSM 1 and the moving technique of experimental
points. In addition, in the proposed method, a quadratic poly-
nomial function without cross terms is used. As already observed,
this choice of the response surface enables to reduce the number
of LSF evaluations. It is noted that the choice of response surface
might cause some approximation error between the RSF and the
actual LSF. However, if the locations of experimental points are
selected in a judicious way, the approximation error in terms of
the failure probability will become very small, such as the
improved RSM proposed by Allaix [19].

2. Classical response surface method

In the classical RSM, the actual LSF G(X) is replaced by a
polynomial type of function GðXÞ, typically a quadratic polynomial

function without cross terms, given as

GðXÞ ¼ aþ
Xn

i ¼ 1

bixiþ
Xn

i ¼ 1

cix
2
i ð2Þ

where n is the number of random variables X, and a, bi,
and ci are the 2nþ1 unknown coefficients. The unknown coeffi-
cients are obtained from discrete evaluations of the implicit LSF,
such as through evaluation of the finite element method.

It is seen that Eq. (2) does not contain cross terms, hence the
function GðXÞ basically represents the original function G(X) along
the coordinate axes. The points required to obtain GðXÞ are chosen
to be the mean values X and Xi ¼ X7 fr, in which f is an arbitrary
factor and s is the vector of standard deviations of random
variables X, respectively. Next, using the 2nþ1 function values of
G(X) at these points, the parameters a, bi, and ci are obtained from
a set of linear equations. If there are more points than 2nþ1
coefficients in Eq. (2), a least squares or similar analysis may need
to be employed to best fit the surface to the points.

The original LSF cannot be properly represented by the RSF
evaluated using the information obtained at the experimental points
chosen in the vicinity of the mean values of basic random variables.
To improve the accuracy of the RSM, Bucher and Bourgund [9]
suggested an alternative process of selecting the experimental points.
In the first step of this algorithm, the mean vector is selected as the
center point. Then the RSF obtained is used to find an estimation of
the design point XD. In the next step, the new center point XM is
chosen on a straight line from the mean vector X to XD so that
G(X)¼0 at the new center point XM from linear interpolation, i.e.,

XM ¼ Xþ XD�X
� � GðXÞ

G X
� �
�GðXDÞ

ð3Þ

Next, the same interpolation is repeated to find an updated
RSFGðXÞ, as described above, by using XM as the new center point.

3. Improvement of the response surface

3.1. Concept of the control point

Since the experimental points generated in subsequent itera-
tions are based on the results of the first iteration. It is very
important to find a good estimate for the design point at the first
iteration. Thus, the control point of experimental points is con-
structed in the paper. It is explained in detail as follows.

1. Select nþ1 initial experimental points, X and Xi ¼X�fr,
i¼1,2,y,n, in which f is an arbitrary factor. From the case study
in [20], it has been shown that very small value of f could not be
used owing to numerical instability, and too large value of f

would cause unrealistic experimental points. Convergence is only
achieved when f is around 2 or 3 at least for the examples
considered. The value of f¼3 has been recommended by several
scholars [9,14,18,19]. Thus, the value of f¼3 is used in the paper.

2. Calculate the values of G X
� �

and G(Xi) at these points selected
in step 1.

3. Calculate the differences between GðXÞand G(Xi), as follows:

F Xið Þ ¼ GðXÞ�G Xið Þ, i¼ 1,2,. . .,n: ð4Þ

4. The following expression is used to obtain the weight for each
experiment point.

wi ¼
F Xið ÞXn

j ¼ 1

F Xj

� ��� �� i¼ 1,2,. . .,n

ð5Þ
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