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a b s t r a c t

We present a novel technique of coupling finite element method with mesh-based flat-top partition of

unity method. The proposed coupling method allows us to bind any order of finite elements with flat-

top partition of unity method. To verify the coupling, we test the coupling method on one- and two-

dimensional boundary value problems including linear elasticity problem on a cracked domain. The

coupled formulation provides a platform for stable enrichments to obtain highly accurate solution

especially in the enrichment area.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, many partition of unity methods showed great
success in the form of meshless method; element-free Galerkin
method (EFGM) [1], reproducing Kernel particle method (RKPM) [2],
method of finite sphere [3], and reproducing polynomial particle
method (RPPM) [4] to name a few. On the other hand, partition of
unity methods that use finite element mesh explicitly becomes
popular in later years because of the easy applicability. h-p clouds
[5], eXtended finite element method (XFEM) [6,7], and generalized
finite element method (GFEM) [8] are in this category.

Recently proposed mesh-based construction of flat-top parti-
tion of unity function (MFPUM) [9], which uses finite element
mesh explicitly, is inspired by a meshless enrichment technique
[5,8,10–12]. Like GFEM or XFEM, MFPUM emphasized the use of
finite element mesh to alleviate the difficulty in numerical
integration. The main difference with GFEM or XFEM is the
existence of flat-top in the partition of unity functions. MFPUM
has the ability to enrich any order of polynomials locally with the
Kronecker-delta property. Thus, imposing essential boundary
conditions is straightforward as in finite element method. MFPUM
is a promising method and has been successfully applied on
problems that contain singularities to obtain highly accurate
results. However, applying MFPUM on the entire computational
domain may not be economical compared to FEM. It is more
desirable to use the same order of finite elements over MFPUM on

the region where the solution is smooth because MFPUM
demands more DOFs compared to the same order of finite
element method. Hence, it is worth to try to couple MFPUM and
the finite element method.

Several techniques have been proposed to couple finite ele-
ment method with different numerical methods, such as coupling
finite element method with spectral method [13], with eXtended
finite element method (XFEM) [14], with boundary element
method (BEM) [15–17], with element free Galerkin method
(EFGM) [18–21], and with moving least square method (MLS)
[22]. However, the coupling method that is used in [13,15–20,22]
is not applicable to couple higher order finite element method
and partition of unity method.

In general, when coupling of two methods is considered, the
computational domain is partitioned into two regions, and a method
is chosen in each part where it is more appropriate. In such case, the
continuity of the primary variable becomes an issue at the interface.
Some of the commonly used technique to enforce the continuity
requirement is the use of Lagrange multipliers and domain decom-
position method. Both these techniques are powerful and scalable to
be used for coupling of large systems. However, we prefer to have a
coupling method without dealing an indefinite system and avoid
iterations between subregions to get a coupled solution that is
continuous. We see the coupling formulation given in [20] shares
our point of view; however, the formulation, which uses mixed
interpolation, is not suitable in our case.

In this paper, we will introduce a technique to couple arbitrary
order of finite elements with MFPUM. To achieve a seamless
coupling between these two, we develop transitional partition of
unity function, which helps the transition. A schematic view of
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such coupling in two dimensions is shown in Fig. 1. In this way,
the coupled system can be dealt with a single weak form which
results a positive definite system.

In the following sections, we first briefly explain mesh-based
flat-top partition of unity method (MFPUM) and propose a
method to couple MFPUM with FEM. To show the feasibility
and effectiveness of the coupling method, we then numerically
study a heat conduction problem on a bar with a boundary layer,
potential flow around a cylinder and a single-edge cracked plate
under uniform tension.

2. Mesh-based flat-top partition of unity method

In our previous work (MFPUM), we achieved an arbitrary order
of polynomial enrichment by introducing a systematic and an
efficient way of generating flat-top partition of unity functions on
a provided mesh. Let us review the basic ideas of mesh-based flat-
top partition of unity method (MFPUM) in one dimension. Let us
begin by establishing some basic notations:

� Element Ei: A member of collection fEig, which partitions the
domain O. Elements are non-overlapping, Ei \ Ej ¼ | for ia j,
and form a cover of O,

SN
i ¼ 1 Ei ¼O. In one dimension, two

points ip1 and ip2 will define an element Ei. See, for example
Fig. 2(a).
� Flat-top parameter wi: The flat-top size of the partition of unity

function is controlled by a parameter 0owio1. Each element
Ei is shrunken to E0i by the parameter wi. See for example,
Fig. 2(b). Each physical element Ei is defined on a local
coordinate system by elemental mapping. Let Ti be the
elemental mapping which maps the interval ð�1,1Þ to the
element Ei. i.e. Tið�1Þ ¼ ip1 and Tið1Þ ¼

ip2. Then the mapping
Ti provides the two nodes Tið�wiÞ ¼

ip
0

1 and TiðwiÞ ¼
ip
0

2 that
defines E0i. It is possible to control wi element-wise, however,
we fix wi to be a global parameter, wi ¼ w for i¼ 1, . . . ,N, in our
numerical examples for convenience.
� Supplemental mesh: The interconnection between shrunken

element E0i results a supplemental mesh shown in Fig. 2(b) and
will be used to build flat-top partition of unity functions. The
numerical integration will be performed on the subpatches
that forms supplemental mesh.
� Patch Qi: A patch is a member of a covering fQig, O�

SN
i ¼ 1 Qi.

The difference between an element Ei and a patch Qi is
that a patch can overlap with its neighboring patch(es).
Fig. 2(c) shows the overlapped patches defined on the supple-
mental mesh. Note that the patch Qi completely includes
element Ei.�
Partition of unity function fi: A family of functions ffig

subordinated to each patch Qi is called partition of unity

functions if they satisfy
PN

i ¼ 1 fiðxÞ ¼ 1, 8xAO where N is the
total number of elements. A flat-top area of partition of unity
function fi that is shown in Fig. 2(c) is given in closed form as
follows:

fiðxÞ ¼

1
ip
0

�i�1p
0

2

ðx�i�1p
0

2 Þ if xAQi�1\Qi,

1 if xAQi\ðQi�1 [ Qiþ1Þ,

�1
iþ1p

0

1�
ip
0

2

ðx�iþ1p
0

1 Þ if xAQiþ1\Qi,

8>>>>>><
>>>>>>:

ð1Þ

where Q 0i ¼Qi\ðQi�1 [ Qiþ1Þ is the flat-top area of fi.
� Node ink: The kth node of element Ei is denoted by ink. The

points (ink,k¼ 1, . . . ,NÞ which includes the end points of the
interval are distributed in the local coordinate system and
then mapped to the flat-top area of the patch E0i.
Fig. 2(d) shows three nodes defined on element Ei.
� Local approximation function iLk: We use the Lagrange inter-

polating functions defined by the nodes ink as local approx-
imation functions. Note that the support of Lagrange
interpolating functions are unbounded, see Fig. 2(d). The local

Fig. 1. Schematic partition of computational domain O into three parts: OC where

finite element is used, OT where transition occurs, and OF where flat-top partition

of unity method is used.

Fig. 2. MFPUM in one dimension: (a) elements and nodes; (b) shrinking elements

to find flat-top regions; (c) flat-top partition of unity functions on patches;

(d) second-order Lagrange interpolating functions defined by the nodes on

element E0i; (e) global quadratic approximation functions on patch Qi.

W.-T. Hong, P.S. Lee / Finite Elements in Analysis and Design 67 (2013) 43–5544



Download English Version:

https://daneshyari.com/en/article/513937

Download Persian Version:

https://daneshyari.com/article/513937

Daneshyari.com

https://daneshyari.com/en/article/513937
https://daneshyari.com/article/513937
https://daneshyari.com

