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A B S T R A C T

In this paper, we propose a maximum likelihood estimation based regression (MLER) model for multivariate
calibration. The proposed MLER method seeks for the maximum likelihood estimation (MLE) solution of the
least-squares problem, and it is much more robust to noise or outliers and accurate than the traditional
least-squares method. An efficient iteratively reweighted least squares technique is proposed to solve the
MLER model. As a result, our model can obtain accurate spectra–concentrate relations. Experimental results
on three real near-infrared (NIR) spectra data sets demonstrate that the proposed MLER model is much more
efficacious and effective than state-of-the-art partial least squares (PLS) methods.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As an effective tool for chemometrics applications, multivariate
calibration (MVC) aims to reveal the intrinsic quantitative relations
between the spectra and corresponding concentrations by means of
a regression model. According to Beer-Lambert law, the regression
relationship between absorbance and concentration usually follows
a linear regression model. The multiple linear regression (MLR),
principal component regression (PCR), and partial least squares
(PLS) models [1,2] are usually used to describe the linear spectra–
concentration relation.

However, the intrinsic regression process in the above-
mentioned regression techniques is actually least-squares (LS)
regression [3], which is sensitive to noise and outliers [4]. The
quadratic loss function in the LS model measures data and noise on
the same norm scale and does not differentiate noise from data [5].
In the presence of noise or outliers, the estimated regression coef-
ficient may also reflect the effect of noisy samples (outliers). For
spectroscopic data, the noises and outliers are usually encountered
during the data measurement and acquisition, such as instrument
noise, environmental noise, non-representative sampling and so
on [6,7]. These noises or outliers will make the least-squares-based
regression coefficient vector distorted [8].
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In order to eliminate the effect of noise or outliers, many robust
regression methods have been proposed for the MVC, such as robust
SIMPLS (RSIMPLS) [9] and partial robust regression (PRM) [10]. RSIM-
PLS is a robust version of the classic SIMPLS method by using two
robust steps: a robust covariance (or robust scores) estimation and
a robust regression. PRM combines M-regression and PLS regression
by employing two kinds of weights to handle the vertical outliers and
leverage points in a latent variables regression model. There are also
many other algorithms that try to improve the robustness of PLS by
modifying the original PLS weight, such as power PLS (PPLS) [11] and
sparse matrix transform based PLS (SMTPLS) [12]. In PPLS, the PLS
weight is computed by taking powers of the y − X correlations and
X standard deviations, which neutralizes the influence of dominance
of irrelevant X-variance and spurious y-correlations [11]. In SMTPLS,
a sparse matrix transform technique is first used to decorrelate the
observation data, then the PLS loading weight is computed in the
decorrelated data space by least squares regression. The SMT decor-
relation operation can alleviate the effect of correlated variables to
the least squares computation of PLS weight.

Rather than making robust estimation for PLS in the latent vari-
able space, we preform the robust regression in the original data
space and propose a robust maximum likelihood estimation based
regression (MLER) model in this paper. Inspired by the robust regres-
sion theory [13,14], in the original LS model, we replace the objective
term of quadratic loss function to an MLE-like estimator, which min-
imizes a function of the fitting residuals. The minimization problem
can be easily transformed into an iteratively reweighted LS problem,
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where a reasonable weight function is designed for the spectroscopic
regression. The proposed MLER model utilizes the MLE principle
to robust the LS estimator, which can obtain an accurate spectra–
concentrate relation.

2. Maximum Likelihood Estimation Based Regression

Let X = [x1 . . . xn]T be the n × p data matrix with each sample
xi ∈ Rp, and y = [y1, . . . , yn]T be the n×1 response vector. In general,
the relationship between absorbance X and concentration y follows
Beer-Lambert law, which yields to a linear regression relation. The
multiple linear regression (MLR) model is usually used to describe
the spectra–concentration relation as follows:

min
b

‖ y − Xb‖2, (1)

where b is the regression coefficient computed based on the least-
squares criterion. The least-squares method requires the fitted resid-
ual e = y − Xb has symmetric and continuous probability distri-
bution. However, in practice, this may be not true, especially when
outliers (abnormal data or noise) occur in spectroscopic data. In
the presence of outliers, the least-squares model Eq. (1) will largely
affected because the quadratic loss function in the LS model does not
differentiate noise from data [5]. In order to eliminate the effects of
noise or outliers and obtain a robust model, a maximum likelihood
estimation-based regression (MLER) model is proposed.

Inspired by the robust regression theory [13,14], the least-squares
objective function in Eq. (1) can be designed as an MLE-like estima-
tor, which is associated with the distribution of the coding residuals.

Denote the residual e = y − Xb = [e1, e2, . . . , en]T with each ele-
ment ei = yi − xT

i b, i = 1, 2, . . . , n. Assume that e1, e2, . . . , en are
independently and identically distributed according to some proba-
bility density function (PDF) fh(ei), where h denotes the parameter set
that characterizes the distribution. Hence, we can get the likelihood
of the estimator as follow:

Lh(e1, e2, . . . , en) =
n∏

i=1

fh(ei). (2)

The MLE aims to maximize this likelihood function or, equiva-
lently, minimize the objective function

− ln Lh =
n∑

i=1

qh(ei), (3)

where qh(ei) = −lnfh(ei).
The MLE of regression coefficient vector b can be formulated as

the following minimization problem:

J(b) = min
b

n∑
i=1

qh

(
yi − xT

i b
)
. (4)

In Eq. (4), the PDF fh is unknown. We should provide some
prior knowledge on the distribution fh for solving the optimization
problem Eq. (4). In general, we can assume that the unknown PDF
fh(ei) is symmetric, and fh(ei) < fh(ej) if |ei| > |ej|. So qh(ei) has the
following properties: qh(0) is the global minimal of qh(ei); qh(ei) =
qh(−ei); qh(ei) > qh(ej) if |ei| > |ej|. Without loss of generality, we let
qh(0) = 0. With these general assumptions of qh, in the following,

we will transform the minimization problem in Eq. (4) into an itera-
tively reweighted least squares problem, which can derive a weight
with clear physical meaning, i.e., noisy points will have low weight
values.

Let Fh(e) =
∑n

i=1 qh(ei). In order to produce a convex opti-
mization problem, we approximate Fh(e) by its first order Taylor
expansion in the neighborhood of e0 as:

F̃h(e) = Fh(e0) + (e − e0)TF ′
h(e0) +

1
2

(e − e0)TU(e − e0), (5)

where F ′
h(e) is the derivative of Fh(e). Denote by q′

h the derivative of
qh, then F ′

h(e0) = [q′
h(e0,1); q′

h(e0,2); · · · ; q′
h(e0,n)], where e0,i is the i-th

element of e0. The third term on the right hand of Eq. (5) is the high
order residual term, and U is a diagonal matrix for that the elements
in e are independent and there is no cross term between ei and ej,
i �= j, in Fh(e).

Since Fh(e) reaches its minimal value (i.e., 0) at e = 0, we
also require that F̃h(e) has its minimal value at e = 0. Taking the
derivative of F̃h(e) with respect to e, it gets:

F̃ ′
h(e) = F̃ ′

h(e0) + U(e − e0).

Let F̃ ′
h(0) = 0, we have the diagonal element of U as:

Ui,i = uh(e0,i) =
q′
h(e0,i)
e0,i

. (6)

According to the properties of qh(ei), q′
h(ei) will have the same

sign as ei. So each Ui,i is a non-negative scalar. Then F̃h(e) can be
rewritten as F̃h(e) = 1

2 ‖ U1/2e ‖2
2 +b, where b is a scalar value deter-

mined by e0. Since e = y − Xb, the MLER model in Eq. (4) can be
approximated by

J(b, U) = min
b,U

‖ U1/2(y − Xb) ‖2
2 . (7)

The MLE weight matrix U needs to be estimated using Eq. (6),
so Eq. (7) is a local approximation of the MLER in Eq. (4) at e0, and
the minimization procedure of MLER can be transformed into an
iteratively reweighted least square problem with U being updated
using the residuals in previous iteration via Eq. (6). Each Ui,i is a non-
negative scalar, so the weighted least squares in each iteration is
a convex problem, which could be solved easily. Therefore, we can
obtain the solution of Eq. (7) as below:

b = (XTUX)−1(XTUy). (8)

In the practice, when the number of variables is larger than the
number of samples, the least-squares solution in Eq. (8) is usually
unstable. To improve the stability of the solution, a regularized least-
squares solution can be used:

b = (XTUX + kI)−1XTUy, (9)

where k is a regularization parameter and I is an identity matrix.
Since U is a diagonal matrix, its element Ui,i (i.e., uh(ei)) is the

MLE weight assigned to each ei. Intuitively, the noises should have
low weight values. Thus, with Eq. (7), the determination of distribu-
tion qh is now transformed into the determination of MLE weight U.
Considering that the logistic function has properties similar to the
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