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a b s t r a c t

A computational model that allows to explicitly determine transversely isotropic elastic constants of

uni-directional fiber–matrix composite tow as functions of microstructure parameters has been

developed in this study. These relationships are not given in the form of analytical formulae (as it is

in the case of approximate analytical models) but in the form of an extensive database of numerically

evaluated results for different microstructure instances and a numerical scheme that interpolates the

results. To build the database, a standard finite-element-based homogenization technique of a periodic

RVE is employed. The technique is enhanced by introduction of averaging procedure over different

shapes of the 2D fiber layout pattern in the tow cross-section. As a result, a numerical algorithm is

provided that may be easily employed in FE codes as a part of a regular constitutive subroutine.

Sensitivity of the composite elastic constants with respect to the microstructure parameters is also

directly available from the model.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Evaluation of constitutive properties of composite materials is
a crucial issue in computational modelling of mechanical
response of composite structures. The properties obviously
depend on mechanical properties of the constituents as well as
their geometric arrangement that implies the way they interact
with each other. It has long been a challenging task to establish a
closed-form relationship between e.g. the elastic constants of a
composite material and parameters that define its microstruc-
tural (material and geometric) properties. Such a relationship
might allow to evaluate properties of arbitrary composite with a
prescribed microstructure type without the need of costly analy-
sis or experiments. Besides, its powerful advantage would be the
ability to evaluate sensitivity of material properties with respect
to microstructure parameters and, in consequence, to perform
parametric studies and/or numerical optimization of material
microstructure.

This objective is not an easy task, though, even in the case of
such geometrically simple composites as uni-directional (UD)
fiber–matrix tows. UD tows are formed in wide thin tapes used
as laminae in multi-layer (sandwich) laminate structures, as well
as in multi-fiber yarns used to produce bi- or multi-directional
woven-fabric laminae (prepregs) that again serve to build-up
sandwich laminates. The UD tow is an assembly of long and thin
fibers immersed in matrix made of another material. Fibers are

stiffer and stronger than matrix, at least in their longitudinal
direction. Matrix is considered isotropic in its mechanical proper-
ties while properties of fibers may be directional—the appropri-
ate model for this case is deemed transverse isotropy. A variety of
both fiber and matrix materials is employed in industrial practice,
thus the mutual proportions between their elastic properties in
composites may vary in quite wide ranges. Arrangement of fibers
in the tow cross-section is random (Fig. 1a), however, the
computational models typically assume some forms of regularity
in their layout (Fig. 1b,c). The above listed features imply strongly
anisotropic properties of the UD fiber–matrix composites: they
feature high stiffness and strength in the direction of fibers and
much lower in the transversal plane.

There have been several attempts made to determine the
relationships between composite material constants and micro-
structure parameters. First, analytical methods were developed.
Starting from half of the 20th century, formulae based on the
theory of mixtures were employed, in which macroscopic elastic
constants were resultant weighted averages of those of composite
constituents, with weights related to their volume fractions,
respectively. In 1960s and 1970s, more advanced geometric and
material models of UD tows were formulated, among which let us
mention the CCA model of Hashin and Rosen [10] and the model
of Halpin an Tsai [9]. The former (Fig. 1b) leads to a mathematical
formulation in which four of five transversely isotropic material
constants can be exactly expressed as functions of fiber and
matrix material constants and the fiber volume fraction.
The latter yields formulae in which periodic model of the micro-
structure geometry is assumed and the resulting relationships
depend on an empirical coefficient whose value reflects the
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particular geometric pattern of fiber layout. In both cases, isotropy of
fibers is a necessary assumption which limits their applicability.

Significant progress has been made in this area in the end of
20th century and was due to involvement of advanced homo-
genization formulations [4,11]. Upon assumption of microstruc-
ture periodicity (square or hexagonal fiber layout pattern, see
Fig. 1c) approximate analytical solutions, e.g. in the form of fast
convergent infinite series, were proposed. A general formulation
in terms of Fourier series has been given in [16], with some
particular solutions (e.g. for isotropic medium with cylindrical
voids). Neuman series were adapted in [3] for the case of UD tow
with isotropic components in square layout. Solutions based on
Weierstrass zeta functions, involving approximation of infinite
coefficient matrices and vectors, have been formulated in [8,17]
for square and hexagonal patterns, respectively. Although some of
the solutions reach beyond assumptions of the constituents’
isotropy, their generality is still limited by the predefined layout
pattern. It must be noted that the results for hexagonal and
square patterns are different — in the first case the homogenized
material is transversely isotropic while in the other — orthotro-
pic. The latter can be averaged over different orientations of the
square pattern [2] which leads to transverse isotropy, but the
differences are still present.

Subsequently, numerical methods were developed, too. Initi-
ally, assumption of periodicity and homogenization of a periodic
representative volume element (RVE) were considered funda-
mentals of numerical formulations. Practical implementation
employing FE analysis can be found e.g. in [2,19]. This assumption
again enforces an arbitrary choice of a certain layout pattern of
fibers—usually one of those depicted in Fig. 1c. More realistic
(and much more computationally expensive) numerical models
with random fiber layout were investigated in [5,6,15,20].
The resulting values of material constants were situated between
those obtained for hexagonal and square periodic patterns.

The main advantage of the numerical analysis is liberation
from all material and geometric simplifications that limit accu-
racy and completeness of analytical solutions. The full set of
anisotropic material constants can be determined, also in the
nonlinear, inelastic range of their behavior. Their fundamental
drawback, from the point of view of our objective, is that the
results are not parametrized. The evaluated material constants
are only valid for the particular microstructure under considera-
tion and provide no information about how they depend on
changes of the microstructure parameters. Thus, even if some
authors complete the results with their sensitivity gradients with
respect to the parameters [12,13], one cannot get sufficient
knowledge on how to determine elastic properties of composite
at different combinations of the parameters, without multiple
repeating the analysis for different data.

In this study, a parametric constitutive model of a UD composite is
built for the linearly elastic range. The model consists of two parts:

� an extensive database containing values of elastic constants
for a huge set of various microstructure properties, and
� an interpolation scheme for the database results.

The properties saved in the database have been determined for each
case by the numerical homogenization approach with periodic fiber
layout assumption and with some additional enhancement intro-
duced in order to overcome at least some limitations implied by
periodicity. As a result, a ready-to-use constitutive algorithm is pre-
sented, that allows to determine elastic constants of a UD composite
tow for arbitrary values of microstructure parameters, with their
sensitivity with respect to these parameters available on hand.

2. Methods

Macroscopic material properties of the composite (treated as
continuum) depend on properties of its microstructure constitu-
ents (fibers and matrix) as well as of their geometric arrangement.
The objective of this study is to establish the relationship between
them, i.e. present the constitutive equation in a form that enables
to predict the mechanical properties of a UD tow, given values of
certain parameters that uniquely describe its microstructure.
Consequently, one should be able to determine sensitivity of the
macroscopic mechanical properties to variations of the parameters.

Let us denote by s ij and eij the macroscopic (locally volume-
averaged) stress and strain in the composite. If the microstructure
is periodic, a repeatable RVE of the volume O can be defined and
the averaged quantities are related to their local counterparts as

s ij ¼
1

O

Z
O
sij dO, eij ¼

1

O

Z
O
eij dO: ð1Þ

The local stress and strain fulfill the elastic constitutive equation

sij ¼ Cijklekl ð2Þ

in which the distribution of Cijkl within O is known. By macro-
scopic elastic stiffness tensor C ijkl we mean the one that fulfills the
following relationship:

s ij ¼ C ijklekl: ð3Þ

It can be proven [19] that the averaged elastic energy density

U ¼
1

O

Z
O

1

2
sijeij dO¼

1

O

Z
O

1

2
eijCijklekl dO ð4Þ

can be equivalently expressed as

U ¼ 1
2 s ije ij ¼

1
2eijC ijklekl: ð5Þ

Fig. 1. UD composite cross-section: (a) actual [20], (b) concentric cylinder assemblage (CCA) model [10], (c) periodic models (hexagonal and square pattern examples).
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