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a b s t r a c t

The paper presents the efficient application of discontinuous Galerkin (DG) method on polygonal
meshes. Three versions of the DG method in which the approximation is constructed using sets of
arbitrary basis functions are under consideration. The analysed approach does not require definition of
nodes or construction of shape functions. The shape of a polygonal finite element (FE) can be quite
arbitrary. It can have arbitrary number of edges and can be non-convex. In particular, a single FE can have
a polygonal hole or can even consist of two or more completely separated parts. The efficiency, flexibility
and versatility of the presented approach is illustrated with a set of benchmark examples. The paper is
restricted to two-dimensional case. However, direct extension of the algorithms to three-dimensions is
possible.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the discontinuous Galerkin (DG) method
for polygonal meshes. The application of DG method on the
polygonal meshes is currently quite a new topic and there are a
few papers tackling this problem, e.g. [1–7]. In this work, the DG
method on the polygonal meshes is extended to the cases in which
the finite element cells have arbitrary shape and can be convex or
non-convex. Here, the cells can be non-simply-connected (NSC)
(i.e. a cell with holes inside) or even non-connected (NC) (i.e. a cell
consisting of two or more parts which are completely separated
from each other). The approximation in the finite element cells is
based on a set of basis functions which can consist of quite arbi-
trary functions. It means that there are no special requirements for
those functions on edges or vertices of the cell.

Most discrete methods apply the standard meshes, that is:
triangular and quadrilateral meshes in two-dimensional case, or
tetrahedral, hexahedral, prismatic and pyramidal meshes in three
dimensions. The direct extension of standard meshes are poly-
gonal or polyhedral meshes, respectively. Such meshes provide
new flexibility in domain discretisations, especially in complex
geometries, incorporating periodic boundary conditions or pro-
blems with specific physical constraints [8], e.g. modelling a
composite microstructure [9]. On the other hand, all the properties

of a polygonal and a polyhedral are not yet well known and the
research concerning such meshes is needed. In this paper, a
comparison of results gained on polygonal mesh with these on
triangular mesh is presented and it can be concluded that the
polygonal mesh provides better results. Although, this work deals
with the problem of polygonal finite elements, some conclusions
can be directly extended to polyhedral elements.

Although, the combination of DG method with polygonal
meshes is quite new, the idea of polygonal finite element method
(PFEM) reaches 1975 when Wachspress in [10] introduced the
barycentric coordinates and barycentric interpolation and a
rational basis on convex polygons. The renaissance of the
Wachspress work took place at the beginning of our century when
the Wachspress basis functions have been applied to finite ele-
ment method (FEM) [11,12]. Afterwards, a series of other papers
have appeared concerning the FEM on polygonal or polyhedral
meshes, e.g. [13–24]. There are two other methods that deal with
polygonal/polyhedral meshes i.e. mimetic finite difference method
(MFD) (e.g. [25–27]) and virtual element method (VEM) (e.g. [28–
33]). A reliable survey on all the methods based on polygonal/
polyhedral meshes is presented in [34]. The computer applications
of the mentioned methods, namely PFEM, MFD and VEM are not
simple since they either require complicated shape functions or
complex algorithm to be implemented. To apply such methods a
great computational effort has to be made. A competitive alter-
native to these methods is the approaches based on DG idea. They
do not require shape functions construction or any other sophis-
ticated problem formulation.
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In this paper the approximation on finite elements is based on a
set of basis functions, i.e. a set of monomials. In consequence, no
shape functions or nodes are applied in such an approach. There-
fore, the approximation can be easily applied to finite element cell
with arbitrary shape and furthermore, the elements can have holes
and can consist of two or more completely separated parts. The DG
methods in this paper are based on the standard Galerkin weak
formulation and give great flexibility in selecting the approximation
order or the finite element shapes, which can be quite arbitrary. In
the DG method, for two-dimensional case, the same algorithm is
applied to standard triangular or quadrilateral meshes as well as to
meshes with convex and non-convex, NSC and NC polygons. The
integration has to be performed over all finite elements, outer
boundary and over the mesh skeleton (the finite elements bound-
aries). The integration over a finite element is performed in such a
way that its region is subdivided into a set of triangles and then the
standard Gauss method is applied to each of them.

Here, three versions of DG method are considered:

1. discontinuous Galerkin with finite difference (DGFD) method
[35],

2. interface discontinuous Galerkin (IDG) method [36],
3. standard discontinuous Galerkin (SDG) method [37].

In all the versions of the DG method the approximation fields are
constructed by a set of local basis functions in the same way as in
[35]. The results obtained from all three methods are presented
and compared.

The remaining part of this paper is organised as follows:
Section 2 defines the elliptic mathematical problem for which the
DG methods are derived. The discontinuous Galerkin formulations
on polygonal meshes are presented in Section 3 where the IDG,
DGFD and SDG methods are described in Sections 3.1, 3.2 and 3.3,
respectively. Section 4 deals with the approximation techniques
where arbitrary basis functions can be used. The DG methods are
illustrated with a series of benchmark examples in Section 5. The
paper finishes with final conclusions.

2. Mathematical model

The DG methods are presented for scalar elliptic problem that
has a physical interpretation of the stationary heat transport. The
problem starts with the well-known local form of energy balance
equation, Fourier's law as well as boundary conditions of Dirichlet
and Neumann types. The problem is defined in the domainΩwith
outer boundary Γ as follows: find the continuous temperature
field Θ that satisfies the following relations:

div q�r¼ 0; in Ω
q¼ �k∇Θ; in Ω

Θ¼ Θ̂ on ΓΘ

q � n¼ ĥ on Γq ð1Þ
where q is the heat flux vector, r is the heat source density, k is the
heat conductivity parameter for a thermally isotropic material, Θ̂
and ĥ are prescribed values of temperature and heat flux,
respectively, ΓΘ is the part of Γ in which the temperature Θ̂ is
prescribed, Γq is the part of Γ in which the heat flux ĥ is pre-
scribed and n is the unit vector normal to the outer boundary. The
heat flux vector is related to the temperature field by Fourier's law
in (1)2.

The regarded domain is structured by polygonal mesh in 2D.
The mesh consists of a set of cells, outer boundary and the mesh
skeleton, illustrated in Fig. 1. Individual cell is a polygon which
may not necessarily be convex, simply-connected or connected.

The DG method requires integration along the mesh skeleton. In
this paper such integration is performed with the help of the
skeleton local coordinates. The local coordinates are defined by a
set of mutually perpendicular unit vectors ns; ss where vector ns is
normal to the skeleton and referred to as the skeleton normal and
ss is the skeleton tangent. The orientation of these vectors is
arbitrary, providing that they meet the above requirements. It
means that the skeleton normal can be directed to either of the
aligned cells, the same refers to the skeleton tangent. Fig. 2 shows
the set of the skeleton local coordinates for a polygonal mesh.

The DG method is based on the discontinuous approximation
with the discontinuity on the skeleton. The discontinuity has to be
regarded in the global formulation of the problem defined by Eq.
(1), where the integration by parts is performed. Consequently, it
leads to the situation when the jump and mean values of the
discontinuity have to be regarded. Their definitions are based on
the skeleton normal, namely

1fU¼ lim
ϵ-0

1fUϵ; f
� �

xð Þ ¼ lim
ϵ-0

f
� �

ϵ ð2Þ

where the jump and mean values at distance ϵ are defined as
follows:

1fUϵ ¼ f ðxþϵnsÞ� f ðx�ϵnsÞ; f
� �

ϵ ¼ 0:5 f ðxþϵ nsÞþ f ðx�ϵ nsÞ� �
ð3Þ

Fig. 1. Polygonal mesh consisting of a set of cells, outer boundary and mesh
skeleton.

Fig. 2. Mesh skeleton with a set of skeleton local coordinates: normal and tangent.
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