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a b s t r a c t

Topology optimization of continuum structures is a promising field that plays an important role in the
design process. Although the gradient optimization methods are highly developed and succeeded in
solving different problems, they are limited to problems with convex, continuous objective functions
where the gradient information is known. In this paper, we propose a derivative-free level-set method
using pattern search and topology description function, i.e., level-set function. The proposed approach
starts with a single uniform material distribution pattern and ends by the optimized layout, without a
need for prior knowledge about the objective function. In order to demonstrate the effectiveness of our
approach, we tested it by solving eight benchmark problems of compliance minimization with variations
in load cases, boundary conditions and topological details. The results indicate the ability of the proposed
method to overcome the drawbacks of non-gradient topology optimization methods that appeared in the
literature. These drawbacks include coarse finite elements (FE) meshing, checkboard pattern, inferior
solutions and poor attainable topological details. In addition, the computational cost is significantly
reduced.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Topology optimization of continuum structures is a promising
branch of structural optimization, which plays an important role in the
design process. It aims at efficient allocation of the material within a
predefined domain to perform one or more functions targeting max-
imization/minimization of one or more objectives under specified
constraints. For continuum structures, the design domain is discretized
into finite elements, and each element can be void or material. In
mathematical presentation, the design domain is represented by a
matrix of 0/1 elements that is interpreted as void/material.

As an alternative to size and shape optimization, topology
optimization enables designers to obtain optimal design layouts
without a previous guess. In 1988, Bendsøe and Kikuchi published a
research article introducing a homogenization method for topology
optimization [1]. Since this pioneering work, many numerical
algorithms have been proposed which have attempted to solve
problems in different fields such as structural mechanics, optics,
electromagnetics and fluid. Recent reviews can be found in [2–4].

From an application's point of view, the topology optimization
methods can be categorized based on the objectives and con-
straints into gradient and non-gradient methods. Although

gradient-based methods, e.g., power-law, homogenization and
conventional level-set methods, are highly developed and com-
monly used in a wide range of applications, they are not suitable to
solve non-smooth, discontinuous, non-differentiable problems as
well as problems without known gradient information. On the
other hand, the non-gradient methods that rely only on the eva-
luation of the objective rather than the gradients or the sensitiv-
ities information may be useful in solving such problems. Exam-
ples of these problems can be found in [5–8].

Non-gradient topology optimization (NGTO) methods use sto-
chastic search algorithms to find the optimized layouts. Such
methods use simulated annealing [9], genetic algorithms [10–15],
ant colonies [16], particle swarms [17] and differential evolution
[18]. In addition, hybrid methods were proposed to integrate
gradient and non-gradient methods for topology and shape opti-
mization, e.g., [19–22]. Although some of these non-gradient
optimization algorithms showed some success as in [15,18], the
explicit formulation of the optimization problem, where each
decision variable represents a single element in the design
domain, is associated with some limitations such as coarse FE
meshing. Other limitations of NGTO are connectivity constraint;
sensitivity to initial layouts; high computational cost; obtaining
sub-optimal solutions for complex problems; checkboard pattern;
and search parameters that may be suitable for some problems
and not for others.
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As an attempt to reduce the limitation of coarse finite-element
FE meshing, implicit formulations have been proposed to separate
the design variables from the FE mesh. For instance, Bureerat and
Limtragool [23] proposed approximate density distribution as an
implicit method where the finite elements of the design domain
are mapped via splines, and a filter is used to eliminate gray ele-
ments in the transformed design. Guest et al. [24] proposed an
implicit formulation using Heaviside projection method [25]
where the design variables are projected to the design domain
with a certain length. In the work of De Ruiter and Van Keulen
[26], Hamza et al. [27] and Guirguis et al. [28], implicit formula-
tions with continuous optimization variables using a topology
description function were proposed. In these formulations, the
TDF in each iteration is obtained by interpolation of distributed
knots within the design domain.

Although, most of these implicit methods succeeded in redu-
cing the limitation of coarse FE meshing and checkerboard
patterns, the optimization section still suffers from the other
drawbacks. Our proposed NGTO method uses the formulation of
topology description function that is used in [26–28], and aims to
overcome some of these limitations that restrict wide use of NGTO
methods in the continuum domain for real-life problems. The
merits of the proposed method will be appreciated following
Sigmund's criticism of the non-gradient methods [29].

The rest of this paper is organized as follows. In Section 2, the
topology description function is described. Section 3 reviews the
used interpolation techniques for the level-set function. Section 4
presents the pattern search method that used in the optimization
phase of the proposed approach. Section 5 introduces the opti-
mization algorithm and an analysis for the optimization para-
meters. In Sections 6 and 7, the carried experiments are presented
and the effectiveness of the proposed technique is highlighted
through a discussion of the results. This is followed by concluding
remarks in Section 8.

2. Topology description function

The level-set method by Osher and Sethian [30] has attracted
researchers’ attention and succeeded to solve problems in different
fields, e.g., computer vision, image processing, fluid, combustion
simulation, design and topology optimization. In conventional level-
set methods, the structural contour is evolved by solving Hamilton–
Jacobi PDE. In 2000, Sethian and Wiegmann [31] adopted level-set
method for topology optimization, and concurrently De Ruiter and
Van Keulen [32] formulated a similar level-set function based
approach for topology optimization where the level-set function LSF

(i.e. topology description function TDF) is evolved by a genetic algo-
rithm (GA) rather than material interface evolution by solving PDE.

Since this start, research in the topology optimization approa-
ches, that use level-set methods, has been in increase trend but
in the direction of gradient-based methods. On the other hand,
non-gradient optimization with LSF formulation often lack
researchers’ interest due to obtaining unsatisfactory solutions, in
addition to the exhaustive computational cost that genetic algo-
rithms require to get quasi-optimal solutions, which in turn limit
GA-based methods to simple designs with few details, i.e., few
design variables for limited computation resources [27].

Later on, Hamza et al. [27] used LSF formulation that was
proposed by De Ruiter and Van Keulen [26,32], but using kriging
interpolation of fixed knots rather than the description by super-
position of radial basis functions. Guirguis et al. [33] tested the
ability of interpolated level-sets to attain topological details using
image-matching measures as objective functions. This study
showed the capability of topology description function to attain
very fine topological details; however, limitations of the optimi-
zation section were not obvious because of the smooth objective
functions that were used. For randomized nature of genetic algo-
rithms GA and its sensitivity to the initial population, multiple
runs are required to ensure global solution. In addition to that,
proper population size and number of generations should be
increased by increasing number of variables for real-coded GA.
Thus, high computational cost (i.e., hundreds of thousands of
function evaluations for each run) is required to obtain designs
with fine topological details.

The derivative-free level-set method for topology optimization
can be defined as a topology description function that is updated
or evolved by black-box optimization methods, where the solver
requires only the objective value to proceed. By thresholding, the
threshold plane that intersects the description function contains
the layout boundaries, where the intersection curves represent the
material boundaries. In uniformly meshed domains, the level-set
function value above this threshold represents material, and below
the threshold represents void as shown in Fig. 1. In this paper, we
use the traditional representation of continuum domains, where
the design domain is discretized into square cells, in order to
facilitate the comparison with other approaches in the literature of
NGTO. However, the intersected curves by the threshold plane can
be used instead to represent the accurate, smooth boundaries of
the structure by employing geometric mapping for the material-
void interfaces.

There are a very large number of descriptive functions,
which result in the same layout. Owing to the high degrees of
freedom, this number of descriptive functions tends to be
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Fig. 1. Topology description function and design translation.
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