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a b s t r a c t

A moving bounds strategy is proposed to implement simultaneous shape optimization of curved shell
structures and openings. Design variables related to the hole shape are constrained in a planar reference
domain by the moving bounds whose values are adaptively updated as functions of design variables
related to the surface by an arc-length rule. It is shown that this strategy is essential not only to ensure
the geometric consistence in the simultaneous design process but also to hold the shape-preserving of
the mapped FE mesh from reference domains. Numerical results are presented to validate the proposed
method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Thin-walled structures are widely used in aeronautic and
aerospace engineering. To attain specific functional and structural
purposes, such as weight-reduction, structure maintenance and
detection, openings are always designed on the curved surfaces.
For example, the cutout design of a fuselage is a typical case of
perforated shell structures. Although this particular kind of design
problems are very important, a full literature review shows that it
is indeed a rather new research field in the community of shape
optimization and few efforts are found on this subject. Until now,
most contributions have been focused on shape optimization of
either 2D planar curves [1–3] or 3D free surfaces [3–5] of a
structure.

In the design procedure, coordinates related to control points of
a parametric curve or surface are usually defined as shape design
variables [1,3]. The parametric shape is therefore updated by the
linear combination of these control points weighted with inter-
polation functions. Raghavan et al. [6] used shape interpolation to
construct a hyper-surface and thus morphed exclusively between
feasible shapes with a small number of variables. Parameter free
optimization was carried out by Bletzinger and his co-workers
[7,8]. In the approach, design variables are associated directly with

the FE model, which provides an opportunity to define shape
design variables without parameterizing the involved shape and
also takes advantage of a large design space. The pioneer work of
Zienkiewicz and Campbell [9] was, in fact, an earlier attempt to the
parameter free approach but failed with a non-smooth zigzag
boundary shape. It was not until related numerical problems were
solved or avoided by regularization or filtering techniques [7,10]
that the approach became effective.

However, shape optimization of openings on a 3D curved sur-
face is a shape constrained problem. The idea of associating
directly shape design variables with either the continuous or dis-
crete boundary is no longer practicable in this case. Within this
framework, a parametrical mapping method (PMM) for the defi-
nition of geometrical design variables of the openings on the 2D
parametrical space, i.e., the planar reference domain was therefore
proposed [11,12] by the authors. The PMM has the advantage of
ensuring the moving boundary of the involved hole always on the
specific curved surface during the optimization process. Mean-
while, the FE mesh attached to the perforated 3D surface is
obtained by mapping the mesh attached to the reference domain.
The virtual punching method (VPM) [13] provides another option
to solve the problem by employing the existing commercial CAD
software but suffers from the inefficiency of zero-order algorithms.
Further investigations were made to generalize the PMM for the
simultaneous shape optimization of curved surfaces and attached
holes [14], as shown in Fig. 1.
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However, as the 3D curved surface and the involved holes
change their shapes simultaneously, it is necessary to match the
variations described by the global design variables (GDVs) and
local design variables (LDVs), respectively. This is essential to
ensure the geometric compatibility between the surface shape and
the hole shape. In other words, the LDVs have to be adaptively
limited within the reference domain defined by the moving
bounds to ensure the compatibility of the hole attachment on the
shape-varying surface. Therefore, it is no longer valid to apply the
traditional formulation of optimization problems with side con-
straints of fixed bounds. Until now, this issue has not been
highlighted.

Another important issue is how to preserve the mesh quality
when the latter is mapped from the reference domain along with
the variations of GDVs and LDVs. In shape optimization of a curved
surface, the mesh generation has to make sure that the dis-
cretization well approximates the surface geometry with an
allowable precision [15] because the FE discretization of a CAD
model is not only used for the CAE structural analysis but should
also be updated after each design iterative step. This is therefore a
hard nut to crack and spontaneously receives high attention of
many researchers. A direct meshing of the curved surface would
bring about many issues to be resolved [16–18] and undoubtedly
deteriorate shape optimization procedure. Firstly, the FE dis-
cretization should follow the geometrical variations of the surface
shape and openings of the CAD model. Secondly, the surface
normal and tangent should be computed to direct the mesh gen-
eration. Thirdly, any inserted nodes must be precisely located on
the curved surface and the intersection calculations are also
required to avoid the element overlap. Moreover, as the stress
concentration always occurs around the hole boundary, the
neighboring mesh should be locally controlled with high density.

An alternative discretization approach is to mesh the para-
metric reference domain and then make the mapping to the
curved surface [19,20]. This is applicable provided that the para-
metrical equation of a curved surface establishes a one-to-one
correspondence relationship between points on the curved surface
and the parametric space. However, as the mapping is generally a
nonlinear operation, a regular mesh in the parametric space gen-
erally deforms after the mapping even for developable surfaces
and degrades the FE analysis in the extreme case. For this reason,
many researchers have committed themselves to generating iso-
tropic mesh over a 3D surface from anisotropic mesh related to the
planar reference domain of the parametric space. Usually, the
mapping is carried out from a normalized square reference
domain (NSRD) with 0–1 bounds. For example, Chen and Bishop
[21] adopted the property of empty circumellipse instead of empty
circumcircle to create Delaunay triangulation in the parametric
space and used the surface curvature to control the surface mesh

density. Based on the metric map, the advancing front approach
[22] was improved by controlling the size and shape of the tri-
angular mesh in the parametric space to generate well-behaving
grids on the 3D surface. Soni and Yang [23] utilized the arc-lengths
of four outer boundaries of a NURBS surface to discretize the
parametric reference domain. Khamayseh and Hamann [24] pro-
posed an improved elliptic grid generation method for NURBS
surfaces. In a general way, to obtain a mesh with good quality,
each node has to be located properly inside the standard reference
domain to meet the requirement of changeable curvatures of the
involved curved surface. Unfortunately, these algorithms are
relatively time-consuming with many iterative steps and therefore
unsuitable to shape optimization since the optimization itself is a
heavy iteration process. Moreover, the above methods are very
problem-dependent in practice as indicated in reference [25] and a
general rule of meshing the planar reference domain for the
achievement of a good discretization of curved surface still lacks.

For this reason, general methodologies for the simultaneous
shape optimization of the curved surface and involved openings
are developed and the underlying issues listed below are high-
lighted in this paper.

� Establishment of a suitable rule for the definition of a planar
reference domain in the parametric space to ensure the mesh
quality of the 3D curved surface.

� Relationship analysis between GDVs related to the surface
shape and LDVs related to the hole shape.

� Establishment and implementation of the moving bounds
strategy to control LDVs within the reference domain in the
whole optimization process.

On the one hand, the iso-morphing concept, i.e., shape simi-
larity is adopted here and a triangular or a rectangular reference
domain is used for the parameterization of a curved surface patch.
On the other hand, an arc-length rule is proposed to calculate the
moving bounds of the reference domain instead of using the 0–1
normalization. One such non-standard reference domain techni-
que makes it possible to achieve a uniform mesh over the curved
surface as much as possible when the reference domain is uni-
formly meshed. Although this is not theoretically ensured to be
the best parameterization that exactly yields an equal arc-length
discretization over the 3D surface with a uniform partition of
parameter variables in the parametric reference domain, the arc-
length variation would not vary widely at least over the domain
with respect to the variation of parameter variables. In this way,
the meshing process is largely simplified.

In this way, the moving bounds of the reference domain are
updated during the simultaneous shape optimization of curved
surfaces and attached openings to follow the shape variation of
curved surfaces and their values will be used to coordinate LDVs in
the reference domain with GDVs in the real space. Finally, relevant
optimization problems are formulated and solved by the proposed
design procedure. By means of three representative examples, it is
shown that the moving bounds strategy is successfully applied to
coordinate two types of design variables for the achievement of
satisfactory results.

2. Bi-space parameterization with mesh shape preserving

As is well-known, a 3D curved surface has two parametric
coordinates, also called parameter variables, and can generally be

Fig. 1. Simultaneous shape optimization of the curved surface and attached holes:
(a) definition of global design variables (GDVs) related to the curved surface shape;
(b) definition of local design variables (LDVs) related to the hole shape.
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