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a b s t r a c t

The size effects exhibited in the structural behaviors of micro-sized loading components cannot be

described with classical plasticity theory alone. Thus, strain gradient plasticity together with appro-

priate experiments has been used to account for this size effect. In previous implementations of strain

gradient plasticity into finite element code, low order displacement elements with reduced integration,

despite their versatility for solving various structural problems, have been excluded because of their

inability to yield the strain gradient inside the element. In this work, a new method of evaluating the

plastic strain gradient with linear displacement elements via an isoparametric interpolation of the

averaged-at-nodal plastic strain is proposed. Rate-independent yield conditions are satisfied accurately

by the Taylor dislocation hardening model with Abaqus UHARD subroutine. To verify the suggested

approach, the structural behaviors of micro-sized specimens subjected to bending, twisting, and nano-

indentation tests were modeled and analyzed. The predicted size effects are generally in good

agreement with previously published experimental results. Computational efforts are minimized and

user versatilities are maximized by the proposed implementation.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Classical continuum-based plasticity is limited in the context
of determining the intrinsic length scale of material when the
wavelength of the strain field approaches the micron or submi-
cron size. In such cases, the stress at a point depends not only on
the local strain at the corresponding point, but also on the strains
in the vicinity of the point. Consequently, the stress–strain
relationship becomes non-local and is described by the strain
gradient. Strain gradients develop from inhomogeneous strain
fields that arise due to loading patterns, presence of the crack tip,
the dislocation density, grain boundaries, inclusions, and inter-
faces. These non-local strain fields can be identified through
appropriate micro- and nano-scale experiments and observations.

Strain gradient theory was developed from the theory of linear
elasticity, originally formulated by Cosserat et al. [1], who
employed the work conjugate of couple stresses and the curva-
ture tensor. Couple stresses are moments per unit area with non-
symmetric Cauchy stress. The curvature tensor is a gradient of
rotation. Toupin [2], Mindlin [3], and Koiter [4] later generalized
the gradient theory of elongation and rotation and derived
equilibrium equations with natural boundary conditions that

include higher order stresses as a work conjugate of higher order
strains. Constitutive relationships can be obtained by defining
new strain energy density functions with higher order tensors.

Micro-scale experiments on metals during plastic deformation
have revealed an evident size effect that is attributed to the
plastic strain gradient. This size effect is reflected in the strength-
ening of the material as the specimen size is decreased to the
micron or submicron level (close to the size of microstructure of
the material). Such a phenomenon cannot be described by
classical plasticity theory. Previous experiments on the size effect
include micro-twisting tests [5], micro-indentation tests [6,7],
micro-bending tests [8], and tensile tests with metal matrix
composites [9,10]. From a physical point of view, the plastic
strain gradient is proportional to the density of geometrically
necessary dislocations.

Various theories were presented to model strain gradient plas-
ticity. Higher-order theories, as in the Mindlin strain gradient theory,
included higher-order stresses and strains in their field equations
and boundary conditions (e.g., [11–14]). On the other hand, low-
order theories take account of strain gradient only with the
constitutive relations (e.g., [15–17]) so as to alleviate considerable
complexity for the higher order strain gradient theories. Therefore,
low order strain gradient theories can be implemented with finite
element method in a more conventional framework of J2 plasticity.

Crystallographic plasticity has been used to formulate dislocation
density based problems [18–25]. Recently, critical assessments for
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the strain gradient plasticity theories were made either in mathe-
matical or thermodynamic point of view [26–29].

Strain gradient plasticity in metals includes an evaluation of
strain gradient with respect to various frameworks. In one
evaluation, Aifantis [11,30] considered a single strain gradient
invariant that is the Laplacian of equivalent plastic strain, the only
length scale parameter. Fleck and Hutchinson [12] subsequently
established a more elaborate theory of strain gradient plasticity
with three length parameters and three invariants; they are
corresponded to the rotation and stretch. However, the length
parameters in this scheme must be identified through experi-
mentation ‘a priori’. Gao et al. [13] suggested a single length
parameter that does not need to be experimentally determined;
they related the length parameter with the Taylor dislocation
model that includes a yield stress–plastic strain–plastic strain
gradient relationship. Similarly, Bassani [15] proposed a single
length parameter combined with single strain gradient measure
of lattice incompatibility.

The majority of strain gradient problems are solved analyti-
cally and verified through experimentation (e.g., [31]). However,
use of the finite element method to solve more general problems
by higher order strain gradient theories is extremely difficult; the
variational terms include higher order stresses and strain gradi-
ents that make utilization of the displacement method very
difficult. Specifically, there are few C1 continuous elements to
satisfy the displacement, slope, and rotational continuity across
the element boundary. Higher order theories also lead to diffi-
culties in handling higher order tensors and natural boundary
conditions.

Shu et al. [32] developed linear elastic mixed finite elements
using a framework proposed by Fleck and Hutchinson [12].
Niordson and Hutchinson [33] developed a plane quadrilateral
element having plastic strain degrees of freedom based on the
similar framework. Later Wei [34] presented 3-node triangular
elastoplastic element that takes full aspects of higher order theory
by Fleck and Hutchinson [12]. Huang et al. [35] tested C1-
continuous element and hybrid element using a framework
proposed by Gao et al. [13]. Soh and Wanji [36] developed
displacement-based linear elastic triangular finite elements using
the couple stress theory. The researchers also devised a
patch testing scheme of constant strain and constant curvature.
Fredriksson et al. [37] adopted higher order formulation of
Gudmundson [27] and used plastic strain degrees of freedom for
their plane quadrilateral elements. These methods were limited to
the use of plane elements with increased degrees of freedom.

Niordson and Tvergaard [38] applied low order strain gradient
theory proposed by Bassani [15] for their axisymmetric quad-
rilateral element. They calculated plastic strain gradient by
interpolating effective plastic strain within the element. Qin
et al. [39] and Lee and Chen [21] adopted low order formulation
of Huang et al. [17] and used conventional finite elements that
must have full integration scheme or higher order polynomial
(quadratic or higher) element to evaluate strain gradient. Most of
higher order formulations calculate strain gradient by direct
differentiation of interpolated values from nodal degrees of free-
dom of plastic strain tensor. Alternatively, Gao and Huang [16]
used a volumetric average of the integral strain in the vicinity of a
material point rather than performing a direct differentiation of
strain itself. In subsequent research, Abu Al-Rub and Voyiadjis
[40] introduced a super element approach, while Byon and Lee
[41] proposed element clustering to compute the strain gradient.

Most of prior finite element implementations based on the
higher order strain gradient formulations were limited to two-
dimensional with the requirement of additional degrees of free-
dom, state variables, and compatibility across the elements.
And they tend to be considerably complex and non-standard

when they are combined with a commercial package such as
Abaqus [42]. However, some problems (e.g., boundary conditions
in terms of plastic strain are important) can only be analyzed by
the higher order theories. On the other hand, low order strain
gradient formulations are relatively simple and can be imple-
mented in the standard J2 plasticity framework by adopting a
constitutive relation incorporating strain gradient hardening.
Majority of strain gradient problems were successfully solved
by this scheme. However, to compute strain gradients, these
formulations needed higher order polynomial elements, extra
interpolation or regression of the strain field over the element
cluster. Unavoidably, linear isoparameteric elements (e.g., 3 noded
triangular, 4 noded quadrilateral, 4 noded tetrahedral, and
8 noded hexahedral elements) and reduced integration elements
that are common practice in elastoplastic analyses were impos-
sible or limited. Therefore, a new finite element implementation
that can be applied for the reduced integration 2D and 3D linear
elements is needed. In addition, modeling aspects that can handle
strain gradient plasticity together with other types of failure
options (e.g., various yield criteria, ductile failure, interface
decohesion, and temperature dependency) are often required.
These aspects, if applicable, can be integrated with Abaqus more
successfully using user-defined hardening (UHARD) than user-
defined material (UMAT) or user-defined element (UEL).

In this work, we propose linear finite elements for the low
order strain gradient theory that can be used with reduced
integration to effectively take into account the strain gradient
theory in the incremental framework. The elements can be used
for arbitrary mesh geometries, thus eliminating the need for
super elements or element clusters within the classical plasticity
framework. Since the strain gradient in the linear order elements
(normally termed as constant strain element) is zero, we propose
the use of averaged-at-nodal variables of plastic strain that are, in
mathematical standpoint, smoothed over the surrounding ele-
ments. With this method, strain gradients and their invariants can
be calculated easily as proposed. The proposed method was
implemented in the Abaqus user subroutines user-defined file
control (URDFIL) and UHARD, and then verified through typical
micro-sized structural problems.

2. Finite element implementation

2.1. Calculation of plastic strain gradient

In the theory of strain gradient plasticity, invariants of the
strain gradients are calculated in a variational framework in
accordance with the corresponding length parameters. Aifantis
[11,30] and other researchers (e.g., [43]) used the following strain
gradient invariant of a single length parameter:
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meters as follows:
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where Ep is the generalized equivalent plastic strain that takes
into account strain gradient effects and m is determined from the
material response [45]; the three invariants were ZI ¼
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and m¼2. Noting that rijk ¼ rjik ¼ e

p
ij,k, strain gradient components

are expressed as

Zijk ¼ Zjik � uk,ij ¼ rkijþrkji�rijk ð3Þ
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