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sented approach.

Progressive fracture in quasi-brittle materials is often treated via strain softening models in continuum
damage mechanics. Such constitutive relations favour spurious strain localization and ill-posedness of
boundary value problems. The introduction of non-local damage models together with a characteristic
length parameter controlling the size of the fracture process zone is known to regularize the problem. In
order to account for the non-locality of these models, it is crucial to work with fine spatial discretizations
at the damage progress zone. In this paper we present a non-local damage model in combination with a
mesh-adaptive finite element technique that can help automatize the analysis of progressive fracture
problems in an efficient manner. Classical two-dimensional examples are given to illustrate the pre-
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1. Introduction

The analysis of the failure of engineering materials is a subject
with high interest that has been studied in the last decades from
different perspectives: discrete crack models [17], extended finite
element method (XFEM) [5], discrete element method (DEM) [12]
or continuum damage mechanics [18]. Since this work aims at
modelling the initiation of failure and not the behaviour of the
material after fracturing, here the latter approach has been used
because of its greater simplicity.

Continuum damage mechanics is a branch of continuum
mechanics that describes the progressive loss of material integrity
due to the propagation and coalescence of micro-cracks, micro-
voids, and similar defects. These changes in the micro-structure
lead to an irreversible material degradation, characterized by a loss
of stiffness that can be observed on the macro-scale.

The term “continuum damage mechanics” was first used by
Hult [18], but the concept of damage was introduced by Kachanov
in 1958 in the context of creep rupture [20]. In that work Kachanov
introduced the concept of effective stress, and by using continuum
damage he solved problems related to creep in metals. Rabotnov
[37] gave the problem physical meaning by suggesting that the
reduction of the sectional area was measured by means of the
damage parameter. The thermodynamic formalism involved in the
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irreversible process of damage was developed by Lemaitre and
Chaboche [23]. Other important contributions on damage
mechanics include: Mazars and Pijaudier-Cabot [27], Simo and Ju
[39], Oller et al. [31], Oliver et al. [29,30], and Cervera et al. [10,9],
to name but a few.

The behaviour of brittle or quasi-brittle materials such as
concrete, rocks, mortar or other geo-materials is particularly dif-
ficult to predict. In those cases failure is preceded by a gradual
development of a non-linear fracture process zone and a locali-
zation of strain. Realistic failure analysis of such quasi-brittle
structures requires the consideration of progressive damage due
to micro-cracking, modelled by a constitutive law with strain
softening. This typically results in highly non-linear structural
responses and so efficient non-linear solvers based on arc-length
control are needed for the numerical simulations [16].

If the damage parameter depends only on the strain state at the
point under consideration, and no enriched kinematics are adop-
ted to regularize the problem, numerical simulations exhibit a
pathological mesh dependence and the energy consumed by the
fracture process tends to zero as the mesh is refined. This is the
typical behaviour of the so-called local damage models, which are
not able to properly describe both the thickness of localization and
the distance between damaged zones. They suffer from mesh
sensitivity (for size and alignment) and produce unreliable results.
Strains concentrate in one element wide zones and the computed
force-displacement curves are mesh-dependent. The reason
behind these misbehaviours is that the differential equations of
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motion change their type (from elliptic to hyperbolic in static
problems) and the boundary value problem becomes ill-posed [2].

Classical constitutive models require an extension in the form
of a characteristic length to properly model the thickness of
localized zones. Such extension can be done by means of second
gradient models [11], micro-polar [28], strain gradient [40], vis-
cous [24] and non-local terms [19]. In our model we have worked
with the latter approach using a weighted spatial averaging of the
internal variables. In this manner the kinematic and equilibrium
equations remain standard, and the notions of stress and strain
keep their usual meaning.

The first non-local models of this type, proposed in the 1960s,
aimed at improving the description of elastic wave dispersions in
crystals. Non-local elasticity was further developed by Eringen [15]
who later extended it to non-local elasto-plasticity [14]. Subse-
quently, it was found that certain non-local formulations could act
as efficient localization limiters with a regularizing effect on pro-
blems with strain localization [36].

Non-local models lead to smooth solutions with a continuous
variation of strain. However, to resolve narrow bands of highly
localized strains using the finite element method it is necessary to
use sufficiently fine computational grids. Fortunately, the mesh
must be fine only in the damage progression zone, while the
remaining part of the structure can be reasonably well represented
by a coarser mesh. In general, the localization pattern is not known
in advance, and it is actually tedious to suitably construct refined
meshes by hand. Thereby, the efficiency of the analysis can be
greatly increased by means of an adaptive mesh refinement
technique, which automates the whole process [34,6].

In the present work we present a robust non-local isotropic
damage model for quasi-brittle materials that works in a small
deformation regime, along with an adaptive-mesh finite element
technique that permits adapting the spatial discretization in an
optimal manner.

The paper is organized as follows. First, the basic concepts on
continuum damage mechanics are introduced. Details are given on
the basic components of the isotropic damage theory, and on the
equivalent strain forms and damage evolution laws that have been
implemented in this work.

Next, we review the regularization technique that has been
used to overcome the problems associated to strain localization.
The fundamental aspects of the integral-type non-local damage
model derived are presented, pointing out the most relevant
aspects of its numerical implementation. The method for esti-
mating the error of the numerical solution and the mesh-adaptive
scheme are explained in some detail.

Finally, two examples are presented showing that the combi-
nation of the non-local damage model and the mesh-adaptive
technique is a robust method to model the failure of quasi-brittle
materials.

2. A simple isotropic damage model

The simplest damage model for multiaxial stress states is the
isotropic damage model with a simple scalar variable. This model
is based on the assumption that the stiffness degradation is iso-
tropic, i.e., the stiffness moduli corresponding to different direc-
tions decrease proportionally, independently of the direction of
loading. Since an isotropic elastic material is characterized by two
independent elastic constrains, a general isotropic damage model
should deal with two damage variables. The model with a single
variable makes use of the additional assumption that the relative
reduction of all the stiffness coefficients is the same, in other
words, that the Poisson's ratio is not affected by damage. The

stress—strain law is postulated as
c=(1-dE:e=(1-d)o (D

where o is the total stress tensor, € is the total strain tensor, & is
the effective stress tensor, E is the elastic constitutive tensor of the
intact material, and d is the scalar damage variable.

A very simple measure of the damage amplitude in a given
plane is obtained by measuring the area of the intersection of all
defects with that plane. Thereby, we can define the damage vari-
able at a generic section of a material as
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where S and S are respectively the total and the effective area of
the section, and S;=S—S is the damaged part of the area. An
undamaged material is characterized by d=0. Due to propagation
and coalescence of micro-defects, the damage variable grows and
at the late stages of degradation process it approaches asympto-
tically the limit value d=1, corresponding to a complete damaged
material with effective area reduced to zero.

In order to properly determine the evolution of the damage
variable regardless of the loading case we must introduce a
loading function f specifying the elastic domain and the states at
which damage grows. The loading function depends on the strain
tensor &, and on a variable r that controls the evolution of the
elastic domain. A typical definition for function f is

fe,r)=¢gq(€)—T 3)

where & is the equivalent strain, i.e., a scalar measure of the
strain level, and r represents a scalar measure of the largest strain
level ever reached in the previous deformation history of the
material up to its current state, i.e.

r(t) = max{ro, 1}13){( eeq(r)} 4)

The above expression implies that r(t) > roy, where rg is the damage
threshold, a material parameter that represents the value of
equivalent strain at which damage starts. In this formula, t is not
necessarily the physical time (it can be any monotonically
increasing parameter controlling the loading process).

We also postulate the loading-unloading conditions in the
Kuhn-Tucker form:

f<o; =0 (5)

The first condition indicates that r can never be smaller than &,
while the second one means that r cannot decrease. Finally,
according to the third condition, r can grow only if the current
values of &4 and r are equal.

The damage evolution law is defined as

grn=0
0<gin<l

r>0;

ifr=rg
if r>rg

d=g(r) with { (6)
which holds not only during monotonic loading but also during
unloading and reloading.

There are various damage governing laws g(r) that can be
effectively used to model damage growth in quasi-brittle
materials. In this work we adopt the exponential law pro-
posed in [26], which separates the damage in compression and
tension as

£ = agy(r)+ (1~ age(r) ™
with
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