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a b s t r a c t

This paper presents a primal/dual approach to solve the coupled electromechanical problem arising in

the modelling of electrostatically actuated micro-electromechanical systems (MEMS). After a derivation

of complementary energy functionals for both the mechanical and the electrical problems, an original

coupling strategy using a displacement-based (primal) mechanical formulation and an electric vector

potential-based (dual) electrostatic formulation are elaborated. A derivation of the electric force and

the tangent stiffness matrix of the coupled problem is obtained, based on the virtual work principle.

The new formulation has interesting properties with respect to error estimation and pull-in voltage

calculation, which is highlighted on the finite element solution of a micro-resonator structure.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Micro-electromechanical systems (MEMS) are microscopic
devices often used as sensors and actuators. They are composed
of mechanical elements such as beams or plates that move thanks
to some actuation mean. The simplest and most efficient type of
actuation is electrostatic actuation. Indeed, the electrostatic force
appears at the surface of the mechanical structure and at the scale
of microsystems surface forces are predominant compared to
volume forces [1]. To accurately model the behaviour of MEMS, it
is thus necessary to accurately compute the coupling between
mechanical and electrostatic fields, and in particular it is crucial
to accurately compute the electrostatic force.

Following the early work by Synge [2], it has been known for a
long time that complementarity can provide bilateral bounds on
energy in numerical approximations of electrostatic problems [3].
Bilateral bounds on other quantities of interest like capacitances
can also be obtained [4], and although such bounds do not exist in
general for forces (being derivatives of the energy), useful bounds
can nevertheless be obtained on averages over some range of
variation of the configuration parameter [5]. When using numer-
ical techniques like the finite element method, such bounds can
be used for accurate error estimation. Optimal mesh adaptation
can then greatly reduce the overall computational cost, which can

quickly become prohibitive in MEMS modelling due to the huge
aspect ratios of the electromechanical structures.

In this paper we investigate one way to obtain complementary
solutions for electrostatically actuated MEMS, based on the resolu-
tion of the electrostatic problem in terms of an electric vector
potential. This vector potential formulation is the dual of the scalar
potential approach commonly used in the literature [6,7].

The paper is structured as follows. After a derivation of
complementary energy functionals for both the mechanical and
the electrical problems in Section 2, we present in Section 3 an
original coupling strategy using a displacement-based (primal)
mechanical formulation and the electric vector potential-based
(dual) electrostatic formulation. An analytic derivation of the
electric force and the tangent stiffness of the coupled problem is
obtained on a simple reference problem. A finite element for-
mulation of the coupled problem is then derived in Section 4
using the virtual work principle and some interesting properties
of this formulation with respect to error estimation and pull-in
voltage calculation are highlighted on the finite element solution
of a micro-resonator structure in Section 5.

2. Uncoupled mechanical and electrical problems

2.1. Basic equations

We start by considering the mechanical and electrical problems
separately, defined, respectively, over domains Om and Oe. The
boundaries of Om and Oe are @Om ¼Gs [ Gt and @Oe ¼Ge [Gd,
respectively (cf. Fig. 1). Denoting the mechanical strain tensor by S,
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the mechanical stress tensor by T, the electric field by E and the
electric displacement by D, the following equations govern the
behaviour of an electrostatically actuated microsystem.

� The constitutive equations are

T¼HS and D¼ eE, ð1Þ

where H is Hooke’s matrix and e is the permittivity matrix.
� The compatibility equations are

S¼rsu in Om

u¼ u on Gs

(
and

E¼�rf in Oe

f¼f on Ge

(
, ð2Þ

where u and f are, respectively, the mechanical displacement
vector and the electric scalar potential (the overlined quantities
denoting imposed values). The operator r denotes the gradient
operator and rs is the matrix operator for mechanics, i.e., for
three-dimensional problems in cartesian coordinates ðx,y,zÞ:
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The term ‘‘compatibility’’ is used for electrostatics by analogy;
the second system in (2) comes from Faraday’s law for
electrostatics, i.e., r � E¼ 0 in Oe.
� The equilibrium equations are

rs � T¼ f in Om

ns � T¼ t on Gt

(
and

r � D¼ r in Oe

n � D¼ d on Gd

(
, ð3Þ

where f and r are imposed force and charge densities, t and d

are imposed surface tensions and normal electric displace-
ments, n denotes the normal to the boundary, and ns is defined
(in cartesian coordinates) as

ns ¼

nx 0 0

0 ny 0

0 0 nz

nz 0 nx

ny nx 0

0 nz ny

0
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Again, the term ‘‘equilibrium’’ is used for electrostatics by analogy;
the equation for the electric displacement in (3) is Gauss’s law.

2.2. Complementary energy functionals

In order to derive the energy functional for both the mechan-
ical and the electrostatic problems in complementary ways, we
start from the 3-field functional of Fraeiis de Veubeke [8,9],
impose the constitutive equations strongly, then either impose
the compatibility equations strongly (which leads to the primal

formulation), or the equilibrium equation strongly (which leads
to the dual formulation).

2.2.1. Mechanical energy functionals

For the mechanical problem, the 3-field functional reads

F FHW
m ðu,T,SÞ ¼

Z
Om

fwmðSÞ�T � ðS�rsuÞ�f � ug dO

�

Z
Gs

ðu�uÞ � ns � T dG�
Z
Gt

t � u dG ð4Þ

with

wmðSÞ ¼ 1
2S �HS:

Following the work of Hellinger–Reissner by imposing the con-
stitutive relation (1) as essential conditions (i.e., strongly) in (4)
we obtain the 2-field functional

FHR
m ðu,TÞ ¼

Z
Om

f� ~wmðTÞþT � rsu�f � ug dO

�

Z
Gs

ðu�uÞ � ns � T dG�
Z
Gt

t � u dG ð5Þ

with

~wmðTÞ ¼ T � S�wmðSÞ ¼ 1
2T �H�1T:

To obtain the primal 1-field functional with ‘‘Kinematic
Admissible’’ displacement, we impose the compatibility relation
(2) strongly in (5), which leads to:

FmðuÞ ¼

Z
Om

wmðrsuÞ dO|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
W int

m

�

Z
Om

f � u dOþ
Z
Gt

t � u dG
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Wext
m

: ð6Þ

To obtain the dual 1-field functional with a ‘‘Static Admissible’’ stress
field we impose the equilibrium equation (3) strongly in (5), i.e.:

~FmðTÞ ¼ �

Z
Om

~wmðTÞ dO|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
~W

int

m

þ

Z
Gs

u � ðns � TÞ dG|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
~W

ext

m

: ð7Þ

Relations (6) and (7) provide the expressions for the primal and dual

energy functionals Fm and ~F m of the mechanical problem. Each
functional can be separated into internal and external energy
contributions, respectively, Wm

int and Wm
ext for the primal functional,

and ~W
int

m and ~W
ext

m for the dual.

2.2.2. Electrostatic energy functionals

Following the same methodology as in the previous section,
we can write the 3-field energy functional for the electrostatic
problem in terms of the electric scalar potential, the electric
displacement and the electric field:

F FHW
e ðf,D,EÞ ¼

Z
Oe

fweðEÞ�D � ðEþrfÞ�rfg dO

�

Z
Ge

ðf�fÞn �D dG�
Z
Gd

df dG ð8Þ

with

weðEÞ ¼ 1
2E � eE:

By imposing the constitutive equation (1) strongly in (8) the
2-field electrostatic functional reads

FHR
e ðf,DÞ ¼

Z
Oe

f� ~weðDÞ�D � rf�rfg dO�
Z
Ge

ðf�fÞn � D dG�
Z
Gd

qf dG

ð9Þ

with

~weðDÞ ¼D � E�weðEÞ ¼ 1
2D � e�1D:

Fig. 1. Domains for the mechanical and the electrostatic problems.
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