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a b s t r a c t

Violin strings are relatively short and stiff and are well modeled by Timoshenko beam theory. We use

the static part of the homogeneous differential equation of violin strings to obtain new shape functions

for the finite element analysis of rotating Timoshenko beams. For deriving the shape functions, the

rotating beam is considered as a sequence of violin strings. The violin string shape functions depend on

rotation speed and element position along the beam length and account for centrifugal stiffening effects

as well as rotary inertia and shear deformation on dynamic characteristics of rotating Timoshenko

beams. Numerical results show that the violin string basis functions perform much better than the

conventional polynomials at high rotation speeds and are thus useful for turbo machine applications.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Rotating cantilever beams are used in propellers, turbines,
wind turbines and helicopter rotor blades, etc. [1,2]. Gas and
steam turbine blades are short and rigid and can be modeled as
rotating Timoshenko beams [3]. Rotating Euler–Bernoulli beams
only consider centrifugal force in addition to inertial and elastic
forces for vibration analysis. The secondary effects such as shear
deformation and rotary inertia have a small effect on lower modes
but have considerable effect on higher modes [3]. Hence for
accurate prediction of higher modes, Timoshenko beam models
are employed.

Vibration analysis of non-rotating Timoshenko beams has
been addressed by a some investigators using the finite element
method. Many of these studies experienced difficulty in incorpor-
ating all the boundary conditions. Kapur [4] used a finite element
model approach for finding the frequencies and mode shapes for
free vibrations of a uniform or nonuniform Timoshenko beam for
various boundary conditions. Thomas and Abbas [5] analyzed a
uniform Timoshenko beam by taking the total deflection, the total
slope, bending slope and derivative of bending slope as internal
degrees of freedom. The frequency equation for Timoshenko
beams was developed by van Rensburg and van der Merve [6]
and properties of natural frequencies and mode shapes such as

double eigenvalues, significance of dimensionless parameters and
estimates of large and small eigenvalues were studied for various
boundary conditions. Bokanian [7] developed exact frequency
equations for axially loaded beams. Özdemir and Kaya [8]
performed vibration analysis of Timoshenko beams using the
differential transform method. Friedman and Kosmatka [9] devel-
oped a two node finite element for a Timoshenko beam which
satisfied the static homogeneous governing differential equations.
Kosmatka [10] also developed a two node finite element for an
axially loaded Timoshenko beam. Although some of the methods
presented in cited references take into account axial loads, they
are restricted to non-rotating tapered beams.

The dynamics of rotating Timoshenko beams differs from that
of non-rotating Timoshenko beams since the centrifugal forces
effect the computed frequencies and mode shapes in addition to
shear deformation and rotary inertia. Also, the partial differential
equation for rotating beams has variable coefficients compared to
that of non-rotating beam which has constant coefficients. There-
fore, the rotating beam equation is not analytically solvable even
for Euler–Bernoulli beams and various approximate methods
have been used in the literature. Hodges and Rutkowski [11]
developed a variable order finite element model with displace-
ment functions as power series. Frobenius method of series
solution was used by Naguleswaran [12]. Banerjee [13] used the
dynamic stiffness method for free vibration of centrifugally
stiffened uniform and tapered beams where frequency dependant
shape functions are obtained from governing differential equa-
tion. Özdemir and Kaya [14] used the differential transform
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method, a semi analytical-numerical technique to compute
natural frequencies. It is based on Taylor series expansion where
both the governing differential equations of motion and the
boundary conditions of the system were transformed into a set
of algebraic equations using certain transformation rules. Wang
and Wereley [15] and Vinod et al. [16] used spectral finite
element (SFEM) to study free vibration and wave propagation
characteristics of rotating Euler–Bernoulli beams. The dynamic
stiffness matrix was constructed using the weak form of the
governing differential equation in the frequency domain and
resulting lower order eigenvalue problem was solved. They
discussed drawbacks of available finite element methods which
resulted in large size eigenvalue problem. Recent works which
include Fourier-p finite element [17] advocate such lower order
models which are used in vibration control applications and allow
for easy inclusion of non-uniformities for flexural stiffness and
mass distribution.

Accurate approaches to develop finite elements involve selecting
shape functions such as stiff string functions [18], hybrid stiff string
functions [19], higher order polynomials [20], trigonometric func-
tions [21], rational interpolations functions [22] and beam displace-
ment function [23]. Some of these basis functions try to satisfy the
static part of governing differential equations of the Euler–Bernoulli
rotating beam. The stiff string equation, for instance, is used to
model piano strings and can be obtained by adding a flexural
stiffness term to the wave equation governing string vibration.

However, Timoshenko beams are better models for many
rotating beam structures. Yokohama [24] studied free vibration
characteristics of rotating Timoshenko beams addressing the hub
radius and setting angle effects. Lin et al. [25] studied the
instability and vibration of a rotating Timoshenko beam with
precone. Banerjee and Sobey [26] gave energy expressions for
rotating tapered Timoshenko beams. Banerjee [27] extended the
dynamic element formulation of a rotating Euler–Bernoulli beam
to account for secondary effects. Du et al. [28] solved the partial
differential equation of a rotating Timoshenko beam using the
power series method. Kaya [29] extended their works for rotating
uniform and tapered Timoshenko beams using DTM. Rao and
Gupta [30] used finite element approach to study effects of twist,
offset, speed of rotation and variation of breadth and taper ratios
on natural frequencies and mode shapes. Bazoune and Khulief
[31] used finite element for vibration analysis of double tapered
Timoshenko beams for various boundary conditions. Bambill et al.
[32] used differential quadrature method for vibration analysis of
rotating Timoshenko beams. In this method the derivatives are
approximated using the weighted linear summation of functional
values at all sample points in overall domain. Using this approx-
imation the differential equation is transformed into set of
algebraic equations. The number of equations depends on number
of sample points taken in the domain.

In this paper, we seek to find better shape functions for rotating
Timoshenko beams using the static part of governing differential
equation of a violin string. Maezawa et al. [33] have shown that
Timoshenko beam theory gives a better estimate of the inharmo-
nicity effects in violin strings compared to Euler–Bernoulli beam
theory. Inharmonicity in violin strings occurs because flexural
stiffness and other effects which are present in real strings cause
the frequency of the nth mode to deviate from the exact nth
multiple of the fundamental natural frequency. Interestingly, we
found that the violin string equations can be obtained by assuming
constant tension in the rotating beam equation. Moreover, the violin
string static homogenous differential equations have an exact

solution. As the violin string is the closest approximation to rotating
Timoshenko beams for which an exact solution exists, shape
functions derived from them can exhibit better convergence com-
pared to cubic elements for predicting the frequencies.

2. Timoshenko rotating beam and violin string

The governing equation for free vibrations of a rotating
Timoshenko beam is given by [10]
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where T(x) is axial force due to centrifugal stiffening and is
given by

TðxÞ ¼

Z L

x
rAðxÞO2 dx ð3Þ

Here L is the length of beam, O is the rotational speed, yðx,tÞ is the
angle of rotation of cross-section, w(x,t) is the vertical displace-
ment of beam, r is the density, E and G are elastic constants, k is
the shear coefficient, A(x) is area of cross-section, I(x) is moment
of inertia of cross-section as shown in Fig. 1. The non-dimensional
constants are n¼ AL2=I, b¼ GAkL2=EI and g¼ b=n¼ Gk=E, k2 ¼

rAO2L4=EI. For beams with constant tension, Eqs. (1) and (2)
reduce to
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where T is the constant axial tension. We call these the violin
string equations in an analogy to the typical Euler–Bernoulli stiff
string equations [17]. The stiff strings are studied in the acoustic
analysis of piano strings. Piano strings have flexural stiffness but
are typically quite long. In fact, the most prized pianos are those
with the largest strings. Violins are much smaller than pianos.
Timoshenko theory gives a better representation of inharmonicity
of violin strings compared to Euler–Bernoulli beam theory [33].
The static part of Eqs. (4) and (5) is obtained by ignoring the
inertial term which leads to
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Fig. 1. Rotating beam.

Fig. 2. Beam element.
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