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a b s t r a c t

The performance of two curved beam finite element models based on coupled polynomial displacement
fields is investigated for out-of-plane vibration of arches. These two-noded beam models employ cur-
vilinear strain definitions and have three degrees of freedom per node namely, out-of-plane translation
(v), out-of-plane bending rotation (θz) and torsion rotation (θs). The coupled polynomial interpolation
fields are derived independently for Timoshenko and Euler–Bernoulli beam elements using the force-
moment equilibrium equations. Numerical performance of these elements for constrained and uncon-
strained arches is compared with the conventional curved beam models which are based on independent
polynomial fields. The formulation is shown to be free from any spurious constraints in the limit of
‘flexureless torsion’ and ‘torsionless flexure’ and hence devoid of flexure and torsion locking. The
resulting stiffness and consistent mass matrices generated from the coupled displacement models show
excellent convergence of natural frequencies in locking regimes. The accuracy of the shear flexibility
added to the elements is also demonstrated. The coupled polynomial models are shown to perform
consistently over a wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ) stiffness ratios
and are inherently devoid of flexure, torsion and shear locking phenomena.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The out-of-plane free vibration of curved beams exhibit cou-
pled flexure and torsion behavior. The presence of the shear,
flexure and torsion locking phenomena in the out-of-plane
deformation of conventional curved beam finite element models
[1,2] significantly influence their dynamic behavior. The conven-
tional curved Timoshenko beam finite element model exhibit
flexure and torsion locking in addition to shear locking, whereas
Euler–Bernoulli beam model exhibit only torsion locking [2]. The
severity of the flexure and torsion locking phenomena was shown
to depend on the magnitude of flexure-to-torsion (EI/GJ) stiffness
ratio. It was demonstrated that, the use of inconsistent torsion
strain models produces spurious torsion strain energy and fail to
simulate accurately the ‘torsionless flexure’ behavior when GJ⪢EI,
leading to torsion locking. Similarly, the use of inconsistent flexure
strain models produce spurious flexure strain energy and fail to

simulate accurately the ‘flexureless torsion’ behavior when EI⪢GJ,
leading to flexure locking.

Major research on the out-of-plane vibration analysis of curved
beams mainly focused on developing models to accurately repre-
sent the dynamic characteristics [3–15]. Other studies focused on
understanding the effect of shear deformation and rotary inertia
on the frequency and mode shapes of thick and thin beams under
constrained and unconstrained end conditions [16–19]. Recently,
the authors [1,2], investigated flexure and torsion locking phe-
nomena in out-of-plane deformation of Timoshenko and Euler–
Bernoulli curved beams. Improved curved beam finite elements
based on coupled displacement field methodology were proposed
to alleviate these locking effects and to enhance the convergence
rate. In the above papers, the authors have evaluated/examined
performance of these proposed elements in the context of static
analysis. However, the use of coupled shape functions derived
based on the static equilibrium consideration, for computation of
consistent element mass matrix for dynamic analysis is ques-
tionable and the performance of such a finite element is not
obvious. The focus of the current paper is to verify and validate the
applicability of the above coupled shape functions to dynamic
analysis. The important aspect of the shape functions is that their
coefficients are coupled, which however, do not introduce/produce
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any spurious modes even in the extreme limits of stiffness ratios.
The efficacy of the consistent mass matrix is examined and
ascertained in predicting the natural frequencies of curved arches
under different boundary conditions. Also, the performance of the
coupled models is compared with the conventional finite element
models which are based on independent field interpolations.
Further, the applicability and performance is verified in the shear,
flexure and torsion locking regimes.

This article is organized as follows: In Section 2, the geometry
and coordinate systems for a curved beam element are described
and the finite element formulation based on Hamilton's principle is
presented. In Section 3, the independent polynomial fields for
conventional models are presented and the constraints are exam-
ined in the context of flexure and torsion locking. In Section 4,
the displacement fields for coupled polynomial models are pre-
sented and the role of the coupled terms in eliminating locking is
examined in detail. In Section 5, numerical studies are carried out to
demonstrate the efficacy of the coupled models in predicting nat-
ural frequencies of curved beam structures under different end
constraints. These models exhibit consistent performance over a
wide range of flexure-to-shear (EI/GA) and flexure-to-torsion (EI/GJ)
stiffness ratios and are inherently devoid of shear, flexure and tor-
sion locking phenomena. Conclusions are presented in Section 6.

2. Finite element formulation

The geometry and coordinate system for a curved beam ele-
ment of length 2L and radius of curvature R is shown in Fig. 1. A
right-handed orthogonal curvilinear co-ordinate system s-y–z is
used with its origin placed at the center of the element. The nat-
ural coordinate ξ along the circumferential direction is expressed
as ξ¼ s=L:

The out-of-plane flexure, shear and torsion strain components
in the curvilinear co-ordinate system are

κ ¼ �θ0
zþ

θs

R
ð1Þ

γ ¼ v0 �θz ð2Þ

τ¼ θ0
sþ

θz

R
ð3Þ

In the above equations, v is the transverse out-of-plane displace-
ment, θz is the flexure rotation and θs is the torsional rotation of
the cross-section. The prime (0) indicates the derivative with
respect to the circumferential coordinate s.

The strain energy stored in the element is the sum of energies
due to shear, flexure and torsion deformation and is written as

Ueðv;θz;θsÞ ¼
1
2

Z L

� L
kGA v0 �θz

� �2þEIz �θ0
zþ

θs

R

� �2

þGJ θ0
sþ

θz

R

� �2
" #

ds

ð4Þ
The terms in the square bracket represent the strain energy due to
transverse shear deformation, bending and torsion respectively; E
and G denote Young's modulus and shear modulus, respectively, k
is the shear correction factor; and R is the radius of curvature of
the beam element. The geometric parameters A, Iz and J denote the
area, moment of inertia, and torsional constant for the cross-sec-
tion, respectively.

The kinetic energy stored in the element consists of kinetic
energy due to translation motion and rotary inertia due to bending
and torsion is expressed as

Teðv;θz;θsÞ ¼ 1
2

Z L

� L
ρA_v2þρIz _θ

2
z þρIs _θ

2
s

� �
ds ð5Þ

Neglecting the work done by applied forces, the equation of
motion is obtained by applying Hamilton's principle [20] as

0¼
Z t2

t1
δ T�Uð Þ dt ð6Þ

Performing integration by parts we obtain the equation of motion
as

M €qþK q¼ 0 ð7Þ
where q¼ v θz θs

� 	T .
Assuming polynomial expressions for the field variables v, θz

and θs as

v¼
Xl
i ¼ 1

vi ϕi; θz ¼
Xm
i ¼ 1

θzi ψ i; θs ¼
Xn
i ¼ 1

θsi χ i ð8Þ

and substituting in Eq. (7) we obtain the expressions for stiffness
‘K’ and mass ‘M’ as

K11
ij ¼

Z L

�L
GAks

dϕi

ds
dϕj

ds

" #
ds; K12

ij ¼ �
Z L

� L
GAks

dϕi

ds
ψ j

� �
ds¼ K21

ji

K22
ij ¼

Z L

�L
G Aksψ jψ iþGJ

ψ j

R
ψ i

R
þEI

dψ i

ds
dψ i

ds

� �
ds

K23
ij ¼

Z L

�L
GJ
ψ j

R
dχ i

ds
þEI

dψ i

ds
χ i

R

� �
ds¼K32

ji ;

K33
ij ¼

Z L

�L
GJ
dχ j

ds
dχ i

ds
�EI

χ j

R
χ i

R

� �
ds;

K13
ij ¼K31

ji ¼ 0

M11
ij ¼

Z L

�L
ρA ϕjϕi

h i
ds; M22

ij ¼
Z L

�L
ρIzψ jψ i

h i
ds;

M33
ij ¼

Z L

�L
ρIsχ jχ i

h i
ds

The elemental Eq. (7) are assembled to obtain global equations
of motion. These second order ordinary differential equations are
converted into an Eigenvalue problem by assuming harmonic
motion as

K �ω2M

 �

q¼ 0 ð9Þ
where ω are the eigenvalues and q are eigenvectors.

The accuracy and convergence characteristic of an element
depends on the choice of the polynomial assumed for the field
variables. Therefore, the selection of a proper displacement field
for the element is of utmost important. In the following sections,
for a two-noded curved beam element, the displacement fields for
independent polynomial models and coupled polynomial models

Fig. 1. Coordinate system for the 2-noded curved beam element: (a) geometry;
(b) cross-section.
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