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a b s t r a c t

In this paper a homotopy map is proposed to pass limit points of snap-through problems encountered

in geometrically nonlinear finite element analysis. In the vicinity of such points, the tangent stiffness

matrix becomes ill-conditioned, which detrimentally affects the convergence of numerical schemes

such as Newton–Raphson method.

The proposed method overcomes this problem by tracing a well-conditioned path instead of

equilibrium path in the vicinity of critical points. This allows the solution procedure to bypass the

critical point without experiencing ill-conditioning. An instance of such a well-conditioned path is

constructed for limit points. In particular, starting from the stable (or unstable) configuration, we

compute the unstable (or stable) configuration via a robust numerical procedure. Further, since the

tangent matrix derivation is consistent with the residual force computation, the quadratic convergence

of Newton–Raphson method is retained.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Stability analysis is one of the most important design con-
siderations in structural engineering. Many structures such as
bars, beams, plates and shells (which have at least one dimension
much smaller than others) can exhibit structural instability under
certain loading conditions even when the loads are well below
yield point of constituent material. Such behavior is not asso-
ciated with material failure but rather a significant configura-
tional change in structure. Hence, the problem of elastic
instability inevitably requires use of nonlinear theory of elasticity
where one needs to account for geometric nonlinearities and
large deformations.

Stability analysis of geometrically nonlinear elastic structures
entails obtaining the entire load–displacement path. However,
computing the load–displacement path can be challenging due to
existence of critical points. Critical points are commonly categor-
ized into bifurcation points and limit points [1] as shown in Fig. 1.
This figure also illustrates another class of points known as
turning points. Turning points are regular points and have less
physical/computational significance [2]. The focus of this paper is
on limit points.

In the vicinity of a limit point, the tangent stiffness matrix of
finite element formulation becomes ill-conditioned giving rise to
two problems: (1) the underlying algebraic system of equations

becomes harder to solve using numerical solvers [3,4], (2) solu-
tion jumps to a distant stable configuration making it harder for
a numerical method to converge [5]. Numerous techniques,
reviewed below, have been proposed to overcome these two
problems. We only cover the techniques that are concerned with
geometrically nonlinear Finite Element Analysis (FEA).

Bergan [6] proposed to suppress equilibrium iterations until
the limit point is passed. This solves both problems; however, the
technique unfavorably produces a drift from equilibrium path. An
alternative technique was proposed by Wright and Gaylord [7]
that entails adding a fictitious spring to stabilize the tangent
stiffness matrix in the vicinity of a limit point. However, their
approach appears to be unsuitable for general structures.

Argyris [8] proposed a class of methods referred to as dis-
placement control methods. Different variations of these methods
are formulated for example in [9,10]. The method in [10], for
instance, preserves symmetry and banded form of tangent stiff-
ness matrix. Displacement control methods successfully over-
come abovementioned problems. However, they fail to trace the
equilibrium path beyond a turning point. Moreover these meth-
ods implicitly assume that there exists at least one degree of
freedom with a monotonic evolution. However, such a degree of
freedom may not exist (see for example [11]), and even if it exists,
there is no systematic approach to find it.

Thurston et al. [12] proposed a different technique where modal
transformation was used to control the behavior of ill-conditioned
modes associated with small eigenvalues. However, this method
requires computation of higher order terms in residual vector in
order to make the resulting modal equations consistent; hence, the
method is computationally expensive.
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Clarke and Hancock [13] summarized yet another class of
methods which are obtained by augmenting FEA equations with a
constraint equation. Depending upon the type of the constraint
equation, many techniques have been derived among which arc-
length methods [1,5,14–17] have gained popularity over the past
years. Further developments in arc-length type methods are
summarized in [18–24].

Arc-length methods are well-established and have been
widely used in commercial finite element packages. However, as
Müller [3,4] mentioned, these methods suffer from ill-condition-
ing in the vicinity of critical points in that ‘‘numerical defect of the

stiffness matrix is usually not repaired (exception: Wriggers and Simo

[25], Felippa [26]). It is commonly assumed that during iteration the

critical point is not precisely hit’’. In case of a precise hit, the
solution is usually perturbed and the load step is repeated [27].
Riks [16] showed that this shortcoming stems from particular
formulation of constraint equation. An alternative formulation
was proposed in [16] that led to a robust algorithm near limit
points. However, this technique does not generalize to all con-
straint equations. Moreover, one needs to employ linearized

constraint equation at each corrector step (unlike Crisfield’s
method [5]). Crisfield et al. [28] reported severe difficulties with
conventional cylindrical arc-length method and appealed to
hybrid static/dynamic procedure to overcome these difficulties.
Further failure modes of arc-length methods are summarized by
Carrera in [29].

For the reasons mentioned above, Belytschko et al. [30] believe
that ‘‘tracing of equilibrium branches is often quite difficult; robust

and automatic procedures for continuation are not yet available’’. To
address these challenges, Müller [3,4] proposed a stabilized
Newton–Raphson method. Stabilization methods are widely used
in commercial FEA packages. However, we identify following
shortcomings with such techniques:

1) Larger number of iterations might be required to jump
between two successive, but far apart, stable configurations.

2) Quadratic convergence of Newton method is compromised
due to inconsistency between the stabilized tangent matrix
and residual vector.

3) Only the loading path is captured as shown in Fig. 2. As can be
observed in this figure, there exists a stable portion of
equilibrium path which is not traced during loading, however,
this portion will be traced during unloading. Although stabi-
lization methods can be modified to compute the unloading
path, this will require additional iterations.

4) The topology of the equilibrium path may not be preserved. In
other words, stable but disconnected equilibrium paths may
merge giving the analyst a wrong conclusion about structure’s
response in practice. Such paths are frequently observed for
imperfect systems; see for example [31].

For these reasons, we believe that there are computational

merits to trace the entire equilibrium path, despite the fact that
only stable branches of a system have practical significance.

The proposed method in this paper relies on the concept of
homotopy [32] (also referred to as continuation) to overcome the
abovementioned problems. The main concept behind homotopy
methods is as follows: first an ‘‘easy’’ system of equations to which
the solution is trivially obtained is set up; this easy system is then
gradually transformed into the original system of nonlinear
equations via a control parameter. Homotopy methods have
received considerable attention for solving nonlinear differential
and algebraic equations, see for example [33,34] and references
therein. More recently, these methods have been successfully
applied to solve different instability problems. For examples, Fujii
and Okazawa [35] used homotopy path in conjunction with local
iterations to compute the stability points of structures. Research-
ers in [36] solved pull-in instability problem of electromechanical
systems via homotopy method. A higher order iterative-corrector
method based on homotopy transformation was proposed in [37]
and applied to geometrically nonlinear problems.

In this paper, we exploit the homotopy concept to arrive at a
robust Newton–Raphson technique. In particular, we construct a
different (and well-conditioned) path instead of equilibrium path
in the vicinity of critical points to bypass these points. An instance
of such a path is derived for limit points in Section 3. Through an
adaptive framework, we ensure that the tangent matrix along the
path is well-conditioned. Consequently, the proposed technique
finds the unstable (or stable) configuration of the system from
stable (or unstable) configuration for the fixed load level, essen-
tially jumping over the limit point.

The remainder of the paper is organized as follows. We set up
general FEA equations in the context of large deformation
elasticity in Section 2. The proposed method is formally estab-
lished in Section 3. Adaptive selection of stabilization parameters
is discussed in Section 4. Section 5 presents several numerical
examples, followed by conclusion and future work in Section 6.

2. General FEA equations

Recall that finite element discretization of large displacement
elasticity problems results in a system of nonlinear algebraic
equations of the form [38]

Wðu,lÞ ¼ FintðuÞ�lFext ¼ 0 ð2:1Þ

where W is the residual vector, FintðuÞ is the internal force vector
which is a nonlinear function of displacement u, and Fext is the
normalized external load vector which is assumed to be inde-
pendent of u. The magnitude of the external load is controlled by
l that is varied as the equilibrium path is traced. The standard

Fig. 1. Typical load–displacement graph.

Fig. 2. Loading and unloading paths.
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