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a b s t r a c t

This paper focuses on the numerical integration of polynomial functions along non-uniform rational

B-splines (NURBS) curves and over 2D NURBS-shaped domains, i.e. domains with NURBS boundaries.

The integration of the constant function f¼1 is of special interest in computer aided design software

and the integration of very high-order polynomials is a key aspect in the recently proposed NURBS-

enhanced finite element method (NEFEM). Several well-known numerical quadratures are compared

for the integration of polynomials along NURBS curves, and two transformations for the definition of

numerical quadratures in triangles with one edge defined by a trimmed NURBS are proposed, analyzed

and compared. When exact integration is feasible, explicit formulas for the selection of the number of

integration points are deduced. Numerical examples show the influence of the number of integration

points in NEFEM computations.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Non-uniform rational B-splines (NURBS) [1] are widely used in
computer aided design (CAD). Some basic tools of CAD software
are the computation of the length of a NURBS curve, the subdivi-
sion of a NURBS curve in equally spaced pieces and the computa-
tion of the area of a domain with NURBS boundaries, to name a
few. These basic operations require the numerical integration of
the constant function f¼1 along NURBS curves and over domains
with NURBS boundaries.

On the other hand, CAD models are usually employed by the
finite element (FE) community in the preprocess stage, in order to
build a spatial discretization of the computational domain. Once
the discretization is generated, the exact boundary representation
is replaced by a piecewise polynomial approximation. However,
in the last decade many authors have pointed out the importance
of the geometrical model in FE simulations, see for instance [2–5].
This fact has motivated novel numerical methodologies consider-
ing exact CAD descriptions of the computational domain. For
instance, NURBS-enhanced finite element method (NEFEM) con-
siders an exact representation of the geometry while maintaining
the standard polynomial approximation of the solution. With
the NEFEM approach standard FE interpolation and numerical

integration is used in the large majority of the domain (i.e., in the
interior, for elements not intersecting the boundary) preserving
the computational efficiency of classical FE techniques. Specifi-
cally designed piecewise polynomial interpolation and numerical
integration is required for those FEs along the NURBS boundary.

This paper is devoted to the study of the numerical integration
of low- and high-order polynomial functions along trimmed
NURBS curves and the integration over curved triangular ele-
ments with one edge defined by a trimmed NURBS. Particular
emphasis is placed in the numerical integration of high-order
polynomials, with applications to NEFEM. Several numerical
quadratures are proposed and compared through numerical
examples. The generalization to 3D domains is conceptually easy
but it requires some extra attention to geometrical aspects and it
is presented in [6].

Sections 2 and 3 recall the basic concepts on NURBS and
NEFEM in two dimensions. Section 4 is devoted to the integration
along NURBS curves. Some well-known 1D numerical quadratures
are tested for the numerical integration of low- and high-order
polynomials. The integration over triangular elements with one
edge defined by a trimmed NURBS is addressed in Section 5. Two
transformations for the definition of a numerical quadrature over
a curved triangle are considered. The first one is a transformation
from a straight-sided triangle in order to test the performance
of triangle quadratures. The second one is a transformation from
a rectangle to the curved triangle. When exact integration is
feasible, explicit formulas for the selection of the number of
integration points are deduced. Finally, numerical examples in
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Section 6 show the influence of the number of integration points
in NEFEM computation.

2. Basic concepts on NURBS curves

This section presents some basic notions of NURBS curves in
order to introduce the notation and the concepts employed in the
following sections. For a detailed presentation see for instance [1].

A q-th degree NURBS curve is a piecewise rational function
defined in parametric form as

CðlÞ ¼
Xncp
i ¼ 0

niBiCi,qðlÞ

 ! Xncp
i ¼ 0

niCi,qðlÞ

 !,
, lA ½la,lb�, ð1Þ

where fBig are the coordinates of the control points (determining

the control polygon), fnig are their control weights, fCi,qðlÞg are the

B-spline basis functions of degree q, and the interval ½la,lb� is
called the parametric space. The B-spline basis functions
are defined recursively from the so-called knot vector

L¼ fl0, . . . ,lnk g ¼ fla, . . . ,la|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qþ1

,lqþ1, . . . ,lnk�q�1,lb, . . . ,lb|fflfflfflfflfflffl{zfflfflfflfflfflffl}
qþ1

g by

Ci,0ðlÞ ¼
1, lA ½li,liþ1Þ,

0, l =2 ½li,liþ1Þ,

(
ð2Þ

Ci,kðlÞ ¼
l�li

liþk�li
Ci,k�1ðlÞþ

liþkþ1�l
liþkþ1�liþ1

Ciþ1,k�1ðlÞ, ð3Þ

for k¼1yq, where li, for i¼ 0, . . . ,nk, are the knots or breakpoints.
Note that the first and final knots must coincide with the
endpoints of the parametrization interval and their multiplicity
is always qþ1. The multiplicity of the remaining knots, when it is
larger than one, determines the decrease in the number of
continuous derivatives. The number of control points, ncpþ1,
and knots, nkþ1, are related to the degree of the parametrization,
q, by the relation nk ¼ ncpþqþ1, see [1] for more details.

It is worth remarking that
Pncp

i ¼ 0 Ci,qðlÞ ¼ 1. Thus, Eq. (1)
reduces to a (polynomial) B-spline curve when all the control
weights are equal.

To summarize, a NURBS is just a piecewise rational function
whose definition changes at breakpoints. Fig. 1 shows a NURBS
curve and its control polygon.

In practice, CAD manipulators work with trimmed NURBS,
which are defined as the initial parametrization restricted to a

subspace of the parametric space. Fig. 2 shows the NURBS curve
represented in Fig. 1 trimmed to the subinterval [0.05,0.75].

3. NEFEM fundamentals

Let O�R2 be an open bounded domain whose boundary @O or
a portion of it, is curved. A regular partition of the domain
O ¼

S
eOe in subdomains, triangles in this work, is assumed, such

that Oi

T
Oj ¼ |, for ia j. It is important to remark that, in the

following, Oe denotes the element with an exact description of
the curved boundary. For instance, Fig. 3 shows a domain with
part of the boundary described by a NURBS curve corresponding
to an airfoil profile, and a triangulation of the domain with curved
FEs with an exact boundary representation, i.e. curved NEFEM

elements.
As usual in FE mesh generation codes, it is assumed that every

curved boundary edge belongs to a unique NURBS. That is, one
element edge cannot be defined by portions of two (or more)
different NURBS curves. But on the contrary, it is important to
note that breakpoints, which characterize the piecewise nature of
NURBS, are independent of the mesh discretization. Thus, the
NURBS parametrization can change its definition inside one edge,
that is breakpoints may belong to element edges and do not need
to coincide with FE nodes.

Every interior element (i.e. elements not having an edge that
coincides with the NURBS boundary) can be defined and treated
as standard FEs. Therefore, in the vast majority of the domain,
interpolation and numerical integration are standard. For
elements with at least one edge on the NURBS boundary a
specifically designed interpolation and numerical integration is
considered.

The polynomial approximation is defined with the Cartesian
coordinates x,

uðxÞCuhðxÞ ¼
Xnen
i ¼ 1

uiNiðxÞ, ð4Þ

where ui are nodal values, Ni are polynomial shape functions of
order p in x, and nen is the number of element nodes. Therefore,
the approximation considered in NEFEM ensures reproducibility
of polynomials in the physical space for any order of approxima-
tion p. See [5] for information about efficient computation of the
polynomial base for any degree of interpolation and for any nodal
distribution in Oe. The exact description of the boundary is used
to perform the numerical integration on the physical subdomain
Oe. Thus, special numerical strategies are required for every
element Oe.

4. Numerical integration along NURBS curves

This section is devoted to the numerical integration of poly-
nomial functions along NURBS curves. As pointed out in the
introduction, the numerical integration of the constant function
f¼1 is of particular interest in CAD. It allows to compute the

Fig. 1. NURBS curve (solid line), control points (J), control polygon (dashed line)

and image of the breakpoints (&).

Fig. 2. Trimmed NURBS curve for lA ½0:05,0:75�.

Ω

Fig. 3. Physical domain with part of the boundary defined by a NURBS curve (left)

and a valid triangulation for NEFEM (right).
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