

Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsevier.com/locate/finel

Optimisation of thermo-fatigue reliability of solder joints in surface mount resistor assembly using Taguchi method

FINITE ELEMENTS in ANALYSIS and

Emeka H. Amalu^{a,*}, N.N. Ekere^a, M.T. Zarmai^a, G. Takyi^b

^a School of Engineering, Faculty of Science and Engineering, University of Wolverhampton, West Midlands WV1 1LY, UK
^b Department of Mechanical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

ARTICLE INFO

Article history: Received 25 April 2015 Received in revised form 29 July 2015 Accepted 19 August 2015 Available online 10 September 2015

Keywords: Solder joint reliability Resistor assembly Lead-free solder Component standoff height Homologous temperature Taguchi experimental design Finite element modelling Fatigue damage Accelerated thermal cycling

ABSTRACT

The effect of geometric and ambient parameters on static structural integrity of solder joints in surface mount resistor assembled on printed circuit board (PCB) is investigated to improve the thermo-fatigue reliability of the joints and components. The optimisation of resistor thickness (R_T) and components standoff height (CSH) in a range of operating homologous temperature (T_H) is poised to produce optimal assembly which could accumulate least strain energy density (ω_{acc}) in resistor joints and consequently possesses longer cycles to failure (N_f). Taguchi design of experiment (DOE), $L_9(3^3)$, is used to generate nine designs and finite element modelling (FEM) is employed to simulate the responses of the assemblies to reliability influencing factors (RIFs). The Garofalo–Arrhenius constitutive creep relation is utilised to model high-temperature response of the soldered joints while the concept of signal to noise ratio and statistics are used to determine the optimal design. The results show that settings of lowest R_T , highest CSH and T_H of 0.86 produce optimal assembly which demonstrates potential of reducing ω_{acc} and increasing N_f of the best design of DOE by 46.9% and 88.3%, respectively. More results show that the nature of finite element model and difference in magnitude of thermal expansion coefficient (CTE) of two bodies bonded together and which experience the same temperature change determine the degree of damage on the interface with the former being more determining.

The authors propose the model $D_{M/N} \equiv D_{N/M} = \sqrt[3]{K_1 \times K_2} \begin{cases} 1 \le D_{M/N} \equiv D_{N/M} \langle \infty \rangle \\ 1 \le K_1 \times K_2 \langle \infty \rangle \end{cases}$

(where: M/N, K_1 , K_2 are isotropic materials, CTE and geometric ratio, respectively) as a quick tool to rank and compare boundary damage in a multi-isotropic-material joining.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Resistors remain the key components of most electronic devices which are increasingly deployed to mission critical electronic systems. Such systems operate in sectors which include automotive, oil well-logging and aerospace. In automobiles, electronics are increasingly deployed in the under-the-hood where they serve as sensors and control devices or Electronic Control Unit (ECU). It is anticipated that increase in electronic content of vehicle in response to increasing demand on improving many automobile systems which include engine performance, transmission, steering, traction and combustion, will lead to more electronics being deployed to high-temperature zones of the automobile. Typical under-bonnet and silencer electronics experience temperature

* Corresponding author. Tel.: +44 1902322263. E-mail address: E.Amalu@wlv.ac.uk (E.H. Amalu).

http://dx.doi.org/10.1016/j.finel.2015.08.004 0168-874X/© 2015 Elsevier B.V. All rights reserved. cycling outside the "traditional" temperature range from -55/-65 °C to +125 °C temperatures depending on drive duration, location and climate. Johnson et al. [1] reported that under-the-hood electronics and specifically on-engine electronics can experience ambient temperature cycling in the range from -40 to +150 °C.

Electronics used in well-logging experiences identical temperature cycling. Watson and Castro [2] reported that electronic systems and sensors deployed in downhole drilling operations function at temperatures of about 150–175 °C and above 200 °C in deeper well drilling. Characteristic oil well operates at about 150 °C. Parmentier et al. [3] reported that 80% of oil-wells operates below 150 °C with 95% of them functioning under 175 °C ambient temperature. The search for new oil and gas in very deep reserves coupled with subsequent development and completion of highpressure-high-temperature (HPHT) wells has necessitated operations in higher-temperature ambient. Consequently, development

		L _i	factor level
		ECU	electronic control units
A,B,C	reliability influencing factors	HPHT	high-pressure-high-temperature
R_T	thickness of resistor	S/N	signal to noise ratio
CSH	component standoff height	FC	flip chip
T_H	homologous temperature	R103	resistor component model 103
SJs	solder joints	SMCs	surface mount components
RIFs	reliability influencing factors	WEEE	waste from electrical and electronic equipment
РСВ	printed circuit board	OEMs	original equipment manufacturers
CEMs	contract electronics manufacturer	FEA	finite element analysis
FCOB	flip chip on board	FEM	finite element modelling
ATC	accelerated temperature cycle	IMC _T	thickness of intermetallic compound
CSP	chip scale package	T_A	ambient temperature
SSFs	static structural factors	r	number of measurement
T_M	melting temperature	y_i	value of the ith measured response
ETs	excursion temperatures	ω_{acc}	accumulated strain energy density
FIP	fatigue indicator parameter	TL	termination length
L	resistor length	TT	termination thickness
W	resistor width	PL	copper pad length
G	shortest distance between pads	PT	copper pad thickness
PW	copper pad width	BW	PCB width
BL	PCB length	PWB	printed wire board
BT	PCB thickness	$a_{x,y,z}$	coefficient of thermal expansions (in <i>x</i> , <i>y</i> and <i>z</i>)
$E_{x,y,z}$	Young's moduli (in x, y and z)	$G_{xy,xz,yz}$	shear moduli (in xy,xz,yz)
$\nu_{\rm XV,XZ,VZ}$		C _{1, 2, 4, 4}	Garofalo creep parameters
HATC	highly accelerated temperature cycle	ΔT	change in temperature
decr	creep strain rate	Q	activation energy
σ^{dt}	von Mises effective stress	Т	absolute temperature
R	universal gas constant.	V	volume of material
$u_{(w)}$	displacement in the vertical direction	ΔV	change in volume
γ	cubic expansitivity	D	damage on a material
M,N	component or Material (A, B)	1	length
α	coefficient of linear expansion	W	width
Δl	change in length	t	thickness
ΔW	change in width	K_1	CTE ratio of two materials
Δt	change in thickness	\overline{j}_i	mean of S/N ratio
j	RIFs (designated as A, B or C)	BGA	ball grid array
n	Number of level in the experiment.	F _{jmax}	maximum value of factor j
E_i	effect of factor j	MTTF	mean-time-to-failure
, F _{imin}	minimum value of factor j	K_2	geometric ratio of two materials
N _f	number of cycle to failure		
-			

and production of oil and gas from HPHT wells technically demand that the logging tool electronics be protected from extreme temperature and pressure which would otherwise cause conventional logging tool electronics to fail. Thus, these electronics are protected in sondes and cartridges which increase the device weight and pose a challenge to electronics manufacturing miniaturisation trend.

Similar to the automotive engines, aero engines experience high volume of electronics deployment in recent years. Mechanical and hydraulic actuators in aero engine are increasingly being replaced with electronic actuators. Designing and manufacturing electronics which will operate reliably in harsh ambient demands that the design engineer has in-depth understanding of the complex relationship and interactions among electronics materials, structural integrity of electronics assembly and operating ambient temperature to ensure that system properties and functions are preserved over long operating periods.

Continued reliable performance of surface mount electronic components is challenged by the miniaturisation trend in electronics manufacturing. Surface mount resistors of smaller size are being manufactured and assembled on substrates using varied

component standoff height (CSH). The CSH is the height between the base of the resistor and the top of the substrate printed circuit board (PCB). It is basically the height of the solder joints in electronic assembly. With suitable CSH and right thickness of resistor, a good solder joint integrity could be achieved in a resistor assembly. Such assembly has potential to operate satisfactorily in a high-temperature and harsh ambient. In addition to miniaturisation trend, harsh operating conditions and specifically high-temperature operations has adverse effect on the reliability of solder joints in electronic devices. In earlier investigation [4] the effect of elevated temperature operations on thermo-mechanical reliability of flip chip (FC) assemblies was studied and the impact on the integrity of FC solder joints was reported. Since the integrity of solder joints in electronic assemblies depends hugely on the geometry of the joints, evaluating the integrity of solder joints in resistor R102 will provide information which could be used to improve its thermo-fatigue reliability.

There are significant amount of published studies on improvement of integrity of solder joints in surface mount components (SMCs) but most of them have focused on joints made of lead based solder alloys. With lead-free solders rapidly replacing the

Download English Version:

https://daneshyari.com/en/article/514098

Download Persian Version:

https://daneshyari.com/article/514098

Daneshyari.com